2104 lines
197 KiB
HTML
2104 lines
197 KiB
HTML
|
||
|
||
<!doctype html>
|
||
|
||
<html>
|
||
<head>
|
||
<meta charset="utf-8" />
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
|
||
|
||
<title>quapy.method package — QuaPy 0.1.6 documentation</title>
|
||
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
|
||
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
|
||
|
||
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
|
||
<script src="_static/jquery.js"></script>
|
||
<script src="_static/underscore.js"></script>
|
||
<script src="_static/doctools.js"></script>
|
||
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||
<script>window.MathJax = {"options": {"processHtmlClass": "tex2jax_process|mathjax_process|math|output_area"}}</script>
|
||
<script src="_static/bizstyle.js"></script>
|
||
<link rel="index" title="Index" href="genindex.html" />
|
||
<link rel="search" title="Search" href="search.html" />
|
||
<link rel="prev" title="quapy.data package" href="quapy.data.html" />
|
||
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
|
||
<!--[if lt IE 9]>
|
||
<script src="_static/css3-mediaqueries.js"></script>
|
||
<![endif]-->
|
||
</head><body>
|
||
<div class="related" role="navigation" aria-label="related navigation">
|
||
<h3>Navigation</h3>
|
||
<ul>
|
||
<li class="right" style="margin-right: 10px">
|
||
<a href="genindex.html" title="General Index"
|
||
accesskey="I">index</a></li>
|
||
<li class="right" >
|
||
<a href="py-modindex.html" title="Python Module Index"
|
||
>modules</a> |</li>
|
||
<li class="right" >
|
||
<a href="quapy.data.html" title="quapy.data package"
|
||
accesskey="P">previous</a> |</li>
|
||
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.6 documentation</a> »</li>
|
||
<li class="nav-item nav-item-1"><a href="modules.html" >quapy</a> »</li>
|
||
<li class="nav-item nav-item-2"><a href="quapy.html" accesskey="U">quapy package</a> »</li>
|
||
<li class="nav-item nav-item-this"><a href="">quapy.method package</a></li>
|
||
</ul>
|
||
</div>
|
||
|
||
<div class="document">
|
||
<div class="documentwrapper">
|
||
<div class="bodywrapper">
|
||
<div class="body" role="main">
|
||
|
||
<section id="quapy-method-package">
|
||
<h1>quapy.method package<a class="headerlink" href="#quapy-method-package" title="Permalink to this headline">¶</a></h1>
|
||
<section id="submodules">
|
||
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline">¶</a></h2>
|
||
</section>
|
||
<section id="module-quapy.method.aggregative">
|
||
<span id="quapy-method-aggregative-module"></span><h2>quapy.method.aggregative module<a class="headerlink" href="#module-quapy.method.aggregative" title="Permalink to this headline">¶</a></h2>
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ACC">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">ACC</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.4</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ACC" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier" title="quapy.method.aggregative.AggregativeQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.AggregativeQuantifier</span></code></a></p>
|
||
<p><a class="reference external" href="https://link.springer.com/article/10.1007/s10618-008-0097-y">Adjusted Classify & Count</a>,
|
||
the “adjusted” variant of <a class="reference internal" href="#quapy.method.aggregative.CC" title="quapy.method.aggregative.CC"><code class="xref py py-class docutils literal notranslate"><span class="pre">CC</span></code></a>, that corrects the predictions of CC
|
||
according to the <cite>misclassification rates</cite>.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>val_split</strong> – indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||
misclassification rates are to be estimated.
|
||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||
<cite>k</cite>-fold cross validation (this integer stands for the number of folds <cite>k</cite>), or as a
|
||
<a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (the split itself).</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ACC.aggregate">
|
||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_predictions</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ACC.aggregate" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements the aggregation of label predictions.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>classif_predictions</strong> – <cite>np.ndarray</cite> of label predictions</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ACC.classify">
|
||
<span class="sig-name descname"><span class="pre">classify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ACC.classify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Provides the label predictions for the given instances.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>np.ndarray of shape <cite>(n_instances,)</cite> with label predictions</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ACC.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">,</span> </span><span class="pre">int</span><span class="p"><span class="pre">,</span> </span><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ACC.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains a ACC quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – the training set</p></li>
|
||
<li><p><strong>fit_learner</strong> – set to False to bypass the training (the learner is assumed to be already fit)</p></li>
|
||
<li><p><strong>val_split</strong> – either a float in (0,1) indicating the proportion of training instances to use for
|
||
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
|
||
indicating the validation set itself, or an int indicating the number <cite>k</cite> of folds to be used in <cite>k</cite>-fold
|
||
cross validation to estimate the parameters</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ACC.solve_adjustment">
|
||
<em class="property"><span class="pre">classmethod</span> </em><span class="sig-name descname"><span class="pre">solve_adjustment</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">PteCondEstim</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">prevs_estim</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ACC.solve_adjustment" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Solves the system linear system <span class="math notranslate nohighlight">\(Ax = B\)</span> with <span class="math notranslate nohighlight">\(A\)</span> = <cite>PteCondEstim</cite> and <span class="math notranslate nohighlight">\(B\)</span> = <cite>prevs_estim</cite></p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>PteCondEstim</strong> – a <cite>np.ndarray</cite> of shape <cite>(n_classes,n_classes,)</cite> with entry <cite>(i,j)</cite> being the estimate
|
||
of <span class="math notranslate nohighlight">\(P(y_i|y_j)\)</span>, that is, the probability that an instance that belongs to <span class="math notranslate nohighlight">\(y_j\)</span> ends up being
|
||
classified as belonging to <span class="math notranslate nohighlight">\(y_i\)</span></p></li>
|
||
<li><p><strong>prevs_estim</strong> – a <cite>np.ndarray</cite> of shape <cite>(n_classes,)</cite> with the class prevalence estimates</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>an adjusted <cite>np.ndarray</cite> of shape <cite>(n_classes,)</cite> with the corrected class prevalence estimates</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AdjustedClassifyAndCount">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">AdjustedClassifyAndCount</span></span><a class="headerlink" href="#quapy.method.aggregative.AdjustedClassifyAndCount" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>alias of <a class="reference internal" href="#quapy.method.aggregative.ACC" title="quapy.method.aggregative.ACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ACC</span></code></a></p>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeProbabilisticQuantifier">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">AggregativeProbabilisticQuantifier</span></span><a class="headerlink" href="#quapy.method.aggregative.AggregativeProbabilisticQuantifier" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier" title="quapy.method.aggregative.AggregativeQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.AggregativeQuantifier</span></code></a></p>
|
||
<p>Abstract class for quantification methods that base their estimations on the aggregation of posterior probabilities
|
||
as returned by a probabilistic classifier. Aggregative Probabilistic Quantifiers thus extend Aggregative
|
||
Quantifiers by implementing a _posterior_probabilities_ method returning values in [0,1] – the posterior
|
||
probabilities.</p>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeProbabilisticQuantifier.posterior_probabilities">
|
||
<span class="sig-name descname"><span class="pre">posterior_probabilities</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.AggregativeProbabilisticQuantifier.posterior_probabilities" title="Permalink to this definition">¶</a></dt>
|
||
<dd></dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeProbabilisticQuantifier.predict_proba">
|
||
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.AggregativeProbabilisticQuantifier.predict_proba" title="Permalink to this definition">¶</a></dt>
|
||
<dd></dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeProbabilisticQuantifier.probabilistic">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">probabilistic</span></span><a class="headerlink" href="#quapy.method.aggregative.AggregativeProbabilisticQuantifier.probabilistic" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Indicates whether the quantifier is of type probabilistic or not</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>False (to be overridden)</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeProbabilisticQuantifier.quantify">
|
||
<span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.AggregativeProbabilisticQuantifier.quantify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Generate class prevalence estimates for the sample’s instances by aggregating the label predictions generated
|
||
by the classifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeProbabilisticQuantifier.set_params">
|
||
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.AggregativeProbabilisticQuantifier.set_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Set the parameters of the quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>parameters</strong> – dictionary of param-value pairs</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeQuantifier">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">AggregativeQuantifier</span></span><a class="headerlink" href="#quapy.method.aggregative.AggregativeQuantifier" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.base.BaseQuantifier</span></code></a></p>
|
||
<p>Abstract class for quantification methods that base their estimations on the aggregation of classification
|
||
results. Aggregative Quantifiers thus implement a <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier.classify" title="quapy.method.aggregative.AggregativeQuantifier.classify"><code class="xref py py-meth docutils literal notranslate"><span class="pre">classify()</span></code></a> method and maintain a <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier.learner" title="quapy.method.aggregative.AggregativeQuantifier.learner"><code class="xref py py-attr docutils literal notranslate"><span class="pre">learner</span></code></a> attribute.
|
||
Subclasses of this abstract class must implement the method <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier.aggregate" title="quapy.method.aggregative.AggregativeQuantifier.aggregate"><code class="xref py py-meth docutils literal notranslate"><span class="pre">aggregate()</span></code></a> which computes the aggregation
|
||
of label predictions. The method <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier.quantify" title="quapy.method.aggregative.AggregativeQuantifier.quantify"><code class="xref py py-meth docutils literal notranslate"><span class="pre">quantify()</span></code></a> comes with a default implementation based on</p>
|
||
<blockquote>
|
||
<div><p><a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier.classify" title="quapy.method.aggregative.AggregativeQuantifier.classify"><code class="xref py py-meth docutils literal notranslate"><span class="pre">classify()</span></code></a> and <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier.aggregate" title="quapy.method.aggregative.AggregativeQuantifier.aggregate"><code class="xref py py-meth docutils literal notranslate"><span class="pre">aggregate()</span></code></a>.</p>
|
||
</div></blockquote>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeQuantifier.aggregate">
|
||
<em class="property"><span class="pre">abstract</span> </em><span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_predictions</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.AggregativeQuantifier.aggregate" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements the aggregation of label predictions.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>classif_predictions</strong> – <cite>np.ndarray</cite> of label predictions</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeQuantifier.aggregative">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">aggregative</span></span><a class="headerlink" href="#quapy.method.aggregative.AggregativeQuantifier.aggregative" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Returns True, indicating the quantifier is of type aggregative.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>True</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeQuantifier.classes_">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.method.aggregative.AggregativeQuantifier.classes_" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Class labels, in the same order in which class prevalence values are to be computed.
|
||
This default implementation actually returns the class labels of the learner.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>array-like</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeQuantifier.classify">
|
||
<span class="sig-name descname"><span class="pre">classify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.AggregativeQuantifier.classify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Provides the label predictions for the given instances.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>np.ndarray of shape <cite>(n_instances,)</cite> with label predictions</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeQuantifier.fit">
|
||
<em class="property"><span class="pre">abstract</span> </em><span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.AggregativeQuantifier.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains the aggregative quantifier</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p></li>
|
||
<li><p><strong>fit_learner</strong> – whether or not to train the learner (default is True). Set to False if the
|
||
learner has been trained outside the quantifier.</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeQuantifier.get_params">
|
||
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.AggregativeQuantifier.get_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Return the current parameters of the quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>deep</strong> – for compatibility with sklearn</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>a dictionary of param-value pairs</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeQuantifier.learner">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">learner</span></span><a class="headerlink" href="#quapy.method.aggregative.AggregativeQuantifier.learner" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Gives access to the classifier</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>the classifier (typically an sklearn’s Estimator)</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeQuantifier.quantify">
|
||
<span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.AggregativeQuantifier.quantify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Generate class prevalence estimates for the sample’s instances by aggregating the label predictions generated
|
||
by the classifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.AggregativeQuantifier.set_params">
|
||
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.AggregativeQuantifier.set_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Set the parameters of the quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>parameters</strong> – dictionary of param-value pairs</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.CC">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">CC</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.CC" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier" title="quapy.method.aggregative.AggregativeQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.AggregativeQuantifier</span></code></a></p>
|
||
<p>The most basic Quantification method. One that simply classifies all instances and counts how many have been
|
||
attributed to each of the classes in order to compute class prevalence estimates.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.CC.aggregate">
|
||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_predictions</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.CC.aggregate" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Computes class prevalence estimates by counting the prevalence of each of the predicted labels.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>classif_predictions</strong> – array-like with label predictions</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.CC.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.CC.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains the Classify & Count method unless <cite>fit_learner</cite> is False, in which case, the classifier is assumed to
|
||
be already fit and there is nothing else to do.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p></li>
|
||
<li><p><strong>fit_learner</strong> – if False, the classifier is assumed to be fit</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ClassifyAndCount">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">ClassifyAndCount</span></span><a class="headerlink" href="#quapy.method.aggregative.ClassifyAndCount" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>alias of <a class="reference internal" href="#quapy.method.aggregative.CC" title="quapy.method.aggregative.CC"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.CC</span></code></a></p>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ELM">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">ELM</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">svmperf_base</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">loss</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'01'</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ELM" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier" title="quapy.method.aggregative.AggregativeQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.AggregativeQuantifier</span></code></a>, <a class="reference internal" href="#quapy.method.base.BinaryQuantifier" title="quapy.method.base.BinaryQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.base.BinaryQuantifier</span></code></a></p>
|
||
<p>Class of Explicit Loss Minimization (ELM) quantifiers.
|
||
Quantifiers based on ELM represent a family of methods based on structured output learning;
|
||
these quantifiers rely on classifiers that have been optimized using a quantification-oriented loss
|
||
measure. This implementation relies on
|
||
<a class="reference external" href="https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html">Joachims’ SVM perf</a> structured output
|
||
learning algorithm, which has to be installed and patched for the purpose (see this
|
||
<a class="reference external" href="https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh">script</a>).</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>svmperf_base</strong> – path to the folder containing the binary files of <cite>SVM perf</cite></p></li>
|
||
<li><p><strong>loss</strong> – the loss to optimize (see <a class="reference internal" href="quapy.classification.html#quapy.classification.svmperf.SVMperf.valid_losses" title="quapy.classification.svmperf.SVMperf.valid_losses"><code class="xref py py-attr docutils literal notranslate"><span class="pre">quapy.classification.svmperf.SVMperf.valid_losses</span></code></a>)</p></li>
|
||
<li><p><strong>kwargs</strong> – rest of SVM perf’s parameters</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ELM.aggregate">
|
||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_predictions</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ELM.aggregate" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements the aggregation of label predictions.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>classif_predictions</strong> – <cite>np.ndarray</cite> of label predictions</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ELM.classify">
|
||
<span class="sig-name descname"><span class="pre">classify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">y</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ELM.classify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Provides the label predictions for the given instances.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>np.ndarray of shape <cite>(n_instances,)</cite> with label predictions</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ELM.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ELM.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains the aggregative quantifier</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p></li>
|
||
<li><p><strong>fit_learner</strong> – whether or not to train the learner (default is True). Set to False if the
|
||
learner has been trained outside the quantifier.</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.EMQ">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">EMQ</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.EMQ" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeProbabilisticQuantifier" title="quapy.method.aggregative.AggregativeProbabilisticQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.AggregativeProbabilisticQuantifier</span></code></a></p>
|
||
<p><a class="reference external" href="https://ieeexplore.ieee.org/abstract/document/6789744">Expectation Maximization for Quantification</a> (EMQ),
|
||
aka <cite>Saerens-Latinne-Decaestecker</cite> (SLD) algorithm.
|
||
EMQ consists of using the well-known <cite>Expectation Maximization algorithm</cite> to iteratively update the posterior
|
||
probabilities generated by a probabilistic classifier and the class prevalence estimates obtained via
|
||
maximum-likelihood estimation, in a mutually recursive way, until convergence.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.EMQ.EM">
|
||
<em class="property"><span class="pre">classmethod</span> </em><span class="sig-name descname"><span class="pre">EM</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">tr_prev</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">posterior_probabilities</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.0001</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.EMQ.EM" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Computes the <cite>Expectation Maximization</cite> routine.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>tr_prev</strong> – array-like, the training prevalence</p></li>
|
||
<li><p><strong>posterior_probabilities</strong> – <cite>np.ndarray</cite> of shape <cite>(n_instances, n_classes,)</cite> with the
|
||
posterior probabilities</p></li>
|
||
<li><p><strong>epsilon</strong> – float, the threshold different between two consecutive iterations
|
||
to reach before stopping the loop</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>a tuple with the estimated prevalence values (shape <cite>(n_classes,)</cite>) and
|
||
the corrected posterior probabilities (shape <cite>(n_instances, n_classes,)</cite>)</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.EMQ.EPSILON">
|
||
<span class="sig-name descname"><span class="pre">EPSILON</span></span><em class="property"> <span class="pre">=</span> <span class="pre">0.0001</span></em><a class="headerlink" href="#quapy.method.aggregative.EMQ.EPSILON" title="Permalink to this definition">¶</a></dt>
|
||
<dd></dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.EMQ.MAX_ITER">
|
||
<span class="sig-name descname"><span class="pre">MAX_ITER</span></span><em class="property"> <span class="pre">=</span> <span class="pre">1000</span></em><a class="headerlink" href="#quapy.method.aggregative.EMQ.MAX_ITER" title="Permalink to this definition">¶</a></dt>
|
||
<dd></dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.EMQ.aggregate">
|
||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_posteriors</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.0001</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.EMQ.aggregate" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements the aggregation of label predictions.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>classif_predictions</strong> – <cite>np.ndarray</cite> of label predictions</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.EMQ.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.EMQ.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains the aggregative quantifier</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p></li>
|
||
<li><p><strong>fit_learner</strong> – whether or not to train the learner (default is True). Set to False if the
|
||
learner has been trained outside the quantifier.</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.EMQ.predict_proba">
|
||
<span class="sig-name descname"><span class="pre">predict_proba</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">epsilon</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.0001</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.EMQ.predict_proba" title="Permalink to this definition">¶</a></dt>
|
||
<dd></dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ExpectationMaximizationQuantifier">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">ExpectationMaximizationQuantifier</span></span><a class="headerlink" href="#quapy.method.aggregative.ExpectationMaximizationQuantifier" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>alias of <a class="reference internal" href="#quapy.method.aggregative.EMQ" title="quapy.method.aggregative.EMQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.EMQ</span></code></a></p>
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ExplicitLossMinimisation">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">ExplicitLossMinimisation</span></span><a class="headerlink" href="#quapy.method.aggregative.ExplicitLossMinimisation" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>alias of <a class="reference internal" href="#quapy.method.aggregative.ELM" title="quapy.method.aggregative.ELM"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ELM</span></code></a></p>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.HDy">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">HDy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.4</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.HDy" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeProbabilisticQuantifier" title="quapy.method.aggregative.AggregativeProbabilisticQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.AggregativeProbabilisticQuantifier</span></code></a>, <a class="reference internal" href="#quapy.method.base.BinaryQuantifier" title="quapy.method.base.BinaryQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.base.BinaryQuantifier</span></code></a></p>
|
||
<p><a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S0020025512004069">Hellinger Distance y</a> (HDy).
|
||
HDy is a probabilistic method for training binary quantifiers, that models quantification as the problem of
|
||
minimizing the divergence (in terms of the Hellinger Distance) between two cumulative distributions of posterior
|
||
probabilities returned by the classifier. One of the distributions is generated from the unlabelled examples and
|
||
the other is generated from a validation set. This latter distribution is defined as a mixture of the
|
||
class-conditional distributions of the posterior probabilities returned for the positive and negative validation
|
||
examples, respectively. The parameters of the mixture thus represent the estimates of the class prevalence values.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – a sklearn’s Estimator that generates a binary classifier</p></li>
|
||
<li><p><strong>val_split</strong> – a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
|
||
validation distribution, or a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (the split itself).</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.HDy.aggregate">
|
||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_posteriors</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.HDy.aggregate" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements the aggregation of label predictions.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>classif_predictions</strong> – <cite>np.ndarray</cite> of label predictions</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.HDy.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">,</span> </span><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.HDy.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains a HDy quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – the training set</p></li>
|
||
<li><p><strong>fit_learner</strong> – set to False to bypass the training (the learner is assumed to be already fit)</p></li>
|
||
<li><p><strong>val_split</strong> – either a float in (0,1) indicating the proportion of training instances to use for
|
||
validation (e.g., 0.3 for using 30% of the training set as validation data), or a
|
||
<a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> indicating the validation set itself</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.HellingerDistanceY">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">HellingerDistanceY</span></span><a class="headerlink" href="#quapy.method.aggregative.HellingerDistanceY" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>alias of <a class="reference internal" href="#quapy.method.aggregative.HDy" title="quapy.method.aggregative.HDy"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.HDy</span></code></a></p>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.MAX">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">MAX</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.4</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.MAX" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.ThresholdOptimization" title="quapy.method.aggregative.ThresholdOptimization"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ThresholdOptimization</span></code></a></p>
|
||
<p>Threshold Optimization variant for <a class="reference internal" href="#quapy.method.aggregative.ACC" title="quapy.method.aggregative.ACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">ACC</span></code></a> as proposed by
|
||
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/1150402.1150423">Forman 2006</a> and
|
||
<a class="reference external" href="https://link.springer.com/article/10.1007/s10618-008-0097-y">Forman 2008</a> that looks
|
||
for the threshold that maximizes <cite>tpr-fpr</cite>.
|
||
The goal is to bring improved stability to the denominator of the adjustment.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>val_split</strong> – indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||
misclassification rates are to be estimated.
|
||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||
<cite>k</cite>-fold cross validation (this integer stands for the number of folds <cite>k</cite>), or as a
|
||
<a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (the split itself).</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.MS">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">MS</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.4</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.MS" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.ThresholdOptimization" title="quapy.method.aggregative.ThresholdOptimization"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ThresholdOptimization</span></code></a></p>
|
||
<p>Median Sweep. Threshold Optimization variant for <a class="reference internal" href="#quapy.method.aggregative.ACC" title="quapy.method.aggregative.ACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">ACC</span></code></a> as proposed by
|
||
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/1150402.1150423">Forman 2006</a> and
|
||
<a class="reference external" href="https://link.springer.com/article/10.1007/s10618-008-0097-y">Forman 2008</a> that generates
|
||
class prevalence estimates for all decision thresholds and returns the median of them all.
|
||
The goal is to bring improved stability to the denominator of the adjustment.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>val_split</strong> – indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||
misclassification rates are to be estimated.
|
||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||
<cite>k</cite>-fold cross validation (this integer stands for the number of folds <cite>k</cite>), or as a
|
||
<a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (the split itself).</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.MS2">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">MS2</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.4</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.MS2" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.MS" title="quapy.method.aggregative.MS"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.MS</span></code></a></p>
|
||
<p>Median Sweep 2. Threshold Optimization variant for <a class="reference internal" href="#quapy.method.aggregative.ACC" title="quapy.method.aggregative.ACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">ACC</span></code></a> as proposed by
|
||
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/1150402.1150423">Forman 2006</a> and
|
||
<a class="reference external" href="https://link.springer.com/article/10.1007/s10618-008-0097-y">Forman 2008</a> that generates
|
||
class prevalence estimates for all decision thresholds and returns the median of for cases in
|
||
which <cite>tpr-fpr>0.25</cite>
|
||
The goal is to bring improved stability to the denominator of the adjustment.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>val_split</strong> – indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||
misclassification rates are to be estimated.
|
||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||
<cite>k</cite>-fold cross validation (this integer stands for the number of folds <cite>k</cite>), or as a
|
||
<a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (the split itself).</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.MedianSweep">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">MedianSweep</span></span><a class="headerlink" href="#quapy.method.aggregative.MedianSweep" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>alias of <a class="reference internal" href="#quapy.method.aggregative.MS" title="quapy.method.aggregative.MS"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.MS</span></code></a></p>
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.MedianSweep2">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">MedianSweep2</span></span><a class="headerlink" href="#quapy.method.aggregative.MedianSweep2" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>alias of <a class="reference internal" href="#quapy.method.aggregative.MS2" title="quapy.method.aggregative.MS2"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.MS2</span></code></a></p>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">OneVsAll</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">binary_quantifier</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">-</span> <span class="pre">1</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier" title="quapy.method.aggregative.AggregativeQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.AggregativeQuantifier</span></code></a></p>
|
||
<p>Allows any binary quantifier to perform quantification on single-label datasets.
|
||
The method maintains one binary quantifier for each class, and then l1-normalizes the outputs so that the
|
||
class prevelences sum up to 1.
|
||
This variant was used, along with the <a class="reference internal" href="#quapy.method.aggregative.EMQ" title="quapy.method.aggregative.EMQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">EMQ</span></code></a> quantifier, in
|
||
<a class="reference external" href="https://link.springer.com/content/pdf/10.1007/s13278-016-0327-z.pdf">Gao and Sebastiani, 2016</a>.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – a sklearn’s Estimator that generates a binary classifier</p></li>
|
||
<li><p><strong>n_jobs</strong> – number of parallel workers</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.aggregate">
|
||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_predictions_bin</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.aggregate" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements the aggregation of label predictions.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>classif_predictions</strong> – <cite>np.ndarray</cite> of label predictions</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.binary">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.binary" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Informs that the classifier is not binary</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>False</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.classes_">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.classes_" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Class labels, in the same order in which class prevalence values are to be computed.
|
||
This default implementation actually returns the class labels of the learner.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>array-like</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.classify">
|
||
<span class="sig-name descname"><span class="pre">classify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.classify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Returns a matrix of shape <cite>(n,m,)</cite> with <cite>n</cite> the number of instances and <cite>m</cite> the number of classes. The entry
|
||
<cite>(i,j)</cite> is a binary value indicating whether instance <cite>i `belongs to class `j</cite>. The binary classifications are
|
||
independent of each other, meaning that an instance can end up be attributed to 0, 1, or more classes.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite></p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains the aggregative quantifier</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p></li>
|
||
<li><p><strong>fit_learner</strong> – whether or not to train the learner (default is True). Set to False if the
|
||
learner has been trained outside the quantifier.</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.get_params">
|
||
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.get_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Return the current parameters of the quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>deep</strong> – for compatibility with sklearn</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>a dictionary of param-value pairs</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.posterior_probabilities">
|
||
<span class="sig-name descname"><span class="pre">posterior_probabilities</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.posterior_probabilities" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Returns a matrix of shape <cite>(n,m,2)</cite> with <cite>n</cite> the number of instances and <cite>m</cite> the number of classes. The entry
|
||
<cite>(i,j,1)</cite> (resp. <cite>(i,j,0)</cite>) is a value in [0,1] indicating the posterior probability that instance <cite>i</cite> belongs
|
||
(resp. does not belong) to class <cite>j</cite>.
|
||
The posterior probabilities are independent of each other, meaning that, in general, they do not sum
|
||
up to one.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite></p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.probabilistic">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">probabilistic</span></span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.probabilistic" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Indicates if the classifier is probabilistic or not (depending on the nature of the base classifier).</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>boolean</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.quantify">
|
||
<span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">X</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.quantify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Generate class prevalence estimates for the sample’s instances by aggregating the label predictions generated
|
||
by the classifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.OneVsAll.set_params">
|
||
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.OneVsAll.set_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Set the parameters of the quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>parameters</strong> – dictionary of param-value pairs</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.PACC">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">PACC</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.4</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.PACC" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeProbabilisticQuantifier" title="quapy.method.aggregative.AggregativeProbabilisticQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.AggregativeProbabilisticQuantifier</span></code></a></p>
|
||
<p><a class="reference external" href="https://ieeexplore.ieee.org/abstract/document/5694031">Probabilistic Adjusted Classify & Count</a>,
|
||
the probabilistic variant of ACC that relies on the posterior probabilities returned by a probabilistic classifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>val_split</strong> – indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||
misclassification rates are to be estimated.
|
||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||
<cite>k</cite>-fold cross validation (this integer stands for the number of folds <cite>k</cite>), or as a
|
||
<a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (the split itself).</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.PACC.aggregate">
|
||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_posteriors</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.PACC.aggregate" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements the aggregation of label predictions.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>classif_predictions</strong> – <cite>np.ndarray</cite> of label predictions</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.PACC.classify">
|
||
<span class="sig-name descname"><span class="pre">classify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.PACC.classify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Provides the label predictions for the given instances.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>np.ndarray of shape <cite>(n_instances,)</cite> with label predictions</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.PACC.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">,</span> </span><span class="pre">int</span><span class="p"><span class="pre">,</span> </span><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.PACC.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains a PACC quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – the training set</p></li>
|
||
<li><p><strong>fit_learner</strong> – set to False to bypass the training (the learner is assumed to be already fit)</p></li>
|
||
<li><p><strong>val_split</strong> – either a float in (0,1) indicating the proportion of training instances to use for
|
||
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
|
||
indicating the validation set itself, or an int indicating the number k of folds to be used in kFCV
|
||
to estimate the parameters</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.PCC">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">PCC</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.PCC" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeProbabilisticQuantifier" title="quapy.method.aggregative.AggregativeProbabilisticQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.AggregativeProbabilisticQuantifier</span></code></a></p>
|
||
<p><a class="reference external" href="https://ieeexplore.ieee.org/abstract/document/5694031">Probabilistic Classify & Count</a>,
|
||
the probabilistic variant of CC that relies on the posterior probabilities returned by a probabilistic classifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.PCC.aggregate">
|
||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_posteriors</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.PCC.aggregate" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements the aggregation of label predictions.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>classif_predictions</strong> – <cite>np.ndarray</cite> of label predictions</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.PCC.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.PCC.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains the aggregative quantifier</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p></li>
|
||
<li><p><strong>fit_learner</strong> – whether or not to train the learner (default is True). Set to False if the
|
||
learner has been trained outside the quantifier.</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ProbabilisticAdjustedClassifyAndCount">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">ProbabilisticAdjustedClassifyAndCount</span></span><a class="headerlink" href="#quapy.method.aggregative.ProbabilisticAdjustedClassifyAndCount" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>alias of <a class="reference internal" href="#quapy.method.aggregative.PACC" title="quapy.method.aggregative.PACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.PACC</span></code></a></p>
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ProbabilisticClassifyAndCount">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">ProbabilisticClassifyAndCount</span></span><a class="headerlink" href="#quapy.method.aggregative.ProbabilisticClassifyAndCount" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>alias of <a class="reference internal" href="#quapy.method.aggregative.PCC" title="quapy.method.aggregative.PCC"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.PCC</span></code></a></p>
|
||
</dd></dl>
|
||
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.SLD">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">SLD</span></span><a class="headerlink" href="#quapy.method.aggregative.SLD" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>alias of <a class="reference internal" href="#quapy.method.aggregative.EMQ" title="quapy.method.aggregative.EMQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.EMQ</span></code></a></p>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.SVMAE">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">SVMAE</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">svmperf_base</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.SVMAE" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.ELM" title="quapy.method.aggregative.ELM"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ELM</span></code></a></p>
|
||
<p>SVM(AE), which attempts to minimize Absolute Error as first used by
|
||
<a class="reference external" href="https://arxiv.org/abs/2011.02552">Moreo and Sebastiani, 2021</a>.
|
||
Equivalent to:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">ELM</span><span class="p">(</span><span class="n">svmperf_base</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'mae'</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>svmperf_base</strong> – path to the folder containing the binary files of <cite>SVM perf</cite></p></li>
|
||
<li><p><strong>kwargs</strong> – rest of SVM perf’s parameters</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.SVMKLD">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">SVMKLD</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">svmperf_base</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.SVMKLD" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.ELM" title="quapy.method.aggregative.ELM"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ELM</span></code></a></p>
|
||
<p>SVM(KLD), which attempts to minimize the Kullback-Leibler Divergence as proposed by
|
||
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/2700406">Esuli et al. 2015</a>.
|
||
Equivalent to:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">ELM</span><span class="p">(</span><span class="n">svmperf_base</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'kld'</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>svmperf_base</strong> – path to the folder containing the binary files of <cite>SVM perf</cite></p></li>
|
||
<li><p><strong>kwargs</strong> – rest of SVM perf’s parameters</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.SVMNKLD">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">SVMNKLD</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">svmperf_base</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.SVMNKLD" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.ELM" title="quapy.method.aggregative.ELM"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ELM</span></code></a></p>
|
||
<p>SVM(NKLD), which attempts to minimize a version of the the Kullback-Leibler Divergence normalized
|
||
via the logistic function, as proposed by
|
||
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/2700406">Esuli et al. 2015</a>.
|
||
Equivalent to:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">ELM</span><span class="p">(</span><span class="n">svmperf_base</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'nkld'</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>svmperf_base</strong> – path to the folder containing the binary files of <cite>SVM perf</cite></p></li>
|
||
<li><p><strong>kwargs</strong> – rest of SVM perf’s parameters</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.SVMQ">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">SVMQ</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">svmperf_base</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.SVMQ" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.ELM" title="quapy.method.aggregative.ELM"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ELM</span></code></a></p>
|
||
<p>SVM(Q), which attempts to minimize the <cite>Q</cite> loss combining a classification-oriented loss and a
|
||
quantification-oriented loss, as proposed by
|
||
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S003132031400291X">Barranquero et al. 2015</a>.
|
||
Equivalent to:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">ELM</span><span class="p">(</span><span class="n">svmperf_base</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'q'</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>svmperf_base</strong> – path to the folder containing the binary files of <cite>SVM perf</cite></p></li>
|
||
<li><p><strong>kwargs</strong> – rest of SVM perf’s parameters</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.SVMRAE">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">SVMRAE</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">svmperf_base</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.SVMRAE" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.ELM" title="quapy.method.aggregative.ELM"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ELM</span></code></a></p>
|
||
<p>SVM(RAE), which attempts to minimize Relative Absolute Error as first used by
|
||
<a class="reference external" href="https://arxiv.org/abs/2011.02552">Moreo and Sebastiani, 2021</a>.
|
||
Equivalent to:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">ELM</span><span class="p">(</span><span class="n">svmperf_base</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'mrae'</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>svmperf_base</strong> – path to the folder containing the binary files of <cite>SVM perf</cite></p></li>
|
||
<li><p><strong>kwargs</strong> – rest of SVM perf’s parameters</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.T50">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">T50</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.4</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.T50" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.ThresholdOptimization" title="quapy.method.aggregative.ThresholdOptimization"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ThresholdOptimization</span></code></a></p>
|
||
<p>Threshold Optimization variant for <a class="reference internal" href="#quapy.method.aggregative.ACC" title="quapy.method.aggregative.ACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">ACC</span></code></a> as proposed by
|
||
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/1150402.1150423">Forman 2006</a> and
|
||
<a class="reference external" href="https://link.springer.com/article/10.1007/s10618-008-0097-y">Forman 2008</a> that looks
|
||
for the threshold that makes <cite>tpr</cite> cosest to 0.5.
|
||
The goal is to bring improved stability to the denominator of the adjustment.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>val_split</strong> – indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||
misclassification rates are to be estimated.
|
||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||
<cite>k</cite>-fold cross validation (this integer stands for the number of folds <cite>k</cite>), or as a
|
||
<a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (the split itself).</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ThresholdOptimization">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">ThresholdOptimization</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.4</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ThresholdOptimization" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.AggregativeQuantifier" title="quapy.method.aggregative.AggregativeQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.AggregativeQuantifier</span></code></a>, <a class="reference internal" href="#quapy.method.base.BinaryQuantifier" title="quapy.method.base.BinaryQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.base.BinaryQuantifier</span></code></a></p>
|
||
<p>Abstract class of Threshold Optimization variants for <a class="reference internal" href="#quapy.method.aggregative.ACC" title="quapy.method.aggregative.ACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">ACC</span></code></a> as proposed by
|
||
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/1150402.1150423">Forman 2006</a> and
|
||
<a class="reference external" href="https://link.springer.com/article/10.1007/s10618-008-0097-y">Forman 2008</a>.
|
||
The goal is to bring improved stability to the denominator of the adjustment.
|
||
The different variants are based on different heuristics for choosing a decision threshold
|
||
that would allow for more true positives and many more false positives, on the grounds this
|
||
would deliver larger denominators.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>val_split</strong> – indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||
misclassification rates are to be estimated.
|
||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||
<cite>k</cite>-fold cross validation (this integer stands for the number of folds <cite>k</cite>), or as a
|
||
<a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (the split itself).</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ThresholdOptimization.aggregate">
|
||
<span class="sig-name descname"><span class="pre">aggregate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">classif_predictions</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ThresholdOptimization.aggregate" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements the aggregation of label predictions.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>classif_predictions</strong> – <cite>np.ndarray</cite> of label predictions</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.ThresholdOptimization.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">,</span> </span><span class="pre">int</span><span class="p"><span class="pre">,</span> </span><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.ThresholdOptimization.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains the aggregative quantifier</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p></li>
|
||
<li><p><strong>fit_learner</strong> – whether or not to train the learner (default is True). Set to False if the
|
||
learner has been trained outside the quantifier.</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.aggregative.X">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.aggregative.</span></span><span class="sig-name descname"><span class="pre">X</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">sklearn.base.BaseEstimator</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.4</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.aggregative.X" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.aggregative.ThresholdOptimization" title="quapy.method.aggregative.ThresholdOptimization"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ThresholdOptimization</span></code></a></p>
|
||
<p>Threshold Optimization variant for <a class="reference internal" href="#quapy.method.aggregative.ACC" title="quapy.method.aggregative.ACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">ACC</span></code></a> as proposed by
|
||
<a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/1150402.1150423">Forman 2006</a> and
|
||
<a class="reference external" href="https://link.springer.com/article/10.1007/s10618-008-0097-y">Forman 2008</a> that looks
|
||
for the threshold that yields <cite>tpr=1-fpr</cite>.
|
||
The goal is to bring improved stability to the denominator of the adjustment.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – a sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>val_split</strong> – indicates the proportion of data to be used as a stratified held-out validation set in which the
|
||
misclassification rates are to be estimated.
|
||
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
|
||
validation data, or as an integer, indicating that the misclassification rates should be estimated via
|
||
<cite>k</cite>-fold cross validation (this integer stands for the number of folds <cite>k</cite>), or as a
|
||
<a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (the split itself).</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</section>
|
||
<section id="module-quapy.method.base">
|
||
<span id="quapy-method-base-module"></span><h2>quapy.method.base module<a class="headerlink" href="#module-quapy.method.base" title="Permalink to this headline">¶</a></h2>
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BaseQuantifier">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.base.</span></span><span class="sig-name descname"><span class="pre">BaseQuantifier</span></span><a class="headerlink" href="#quapy.method.base.BaseQuantifier" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
|
||
<p>Abstract Quantifier. A quantifier is defined as an object of a class that implements the method <a class="reference internal" href="#quapy.method.base.BaseQuantifier.fit" title="quapy.method.base.BaseQuantifier.fit"><code class="xref py py-meth docutils literal notranslate"><span class="pre">fit()</span></code></a> on
|
||
<a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a>, the method <a class="reference internal" href="#quapy.method.base.BaseQuantifier.quantify" title="quapy.method.base.BaseQuantifier.quantify"><code class="xref py py-meth docutils literal notranslate"><span class="pre">quantify()</span></code></a>, and the <a class="reference internal" href="#quapy.method.base.BaseQuantifier.set_params" title="quapy.method.base.BaseQuantifier.set_params"><code class="xref py py-meth docutils literal notranslate"><span class="pre">set_params()</span></code></a> and
|
||
<a class="reference internal" href="#quapy.method.base.BaseQuantifier.get_params" title="quapy.method.base.BaseQuantifier.get_params"><code class="xref py py-meth docutils literal notranslate"><span class="pre">get_params()</span></code></a> for model selection (see <a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-meth docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ()</span></code></a>)</p>
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BaseQuantifier.aggregative">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">aggregative</span></span><a class="headerlink" href="#quapy.method.base.BaseQuantifier.aggregative" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Indicates whether the quantifier is of type aggregative or not</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>False (to be overridden)</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BaseQuantifier.binary">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.method.base.BaseQuantifier.binary" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Indicates whether the quantifier is binary or not.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>False (to be overridden)</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BaseQuantifier.classes_">
|
||
<em class="property"><span class="pre">abstract</span> <span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.method.base.BaseQuantifier.classes_" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Class labels, in the same order in which class prevalence values are to be computed.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>array-like</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BaseQuantifier.fit">
|
||
<em class="property"><span class="pre">abstract</span> </em><span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.BaseQuantifier.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains a quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BaseQuantifier.get_params">
|
||
<em class="property"><span class="pre">abstract</span> </em><span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.BaseQuantifier.get_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Return the current parameters of the quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>deep</strong> – for compatibility with sklearn</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>a dictionary of param-value pairs</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BaseQuantifier.n_classes">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">n_classes</span></span><a class="headerlink" href="#quapy.method.base.BaseQuantifier.n_classes" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Returns the number of classes</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>integer</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BaseQuantifier.probabilistic">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">probabilistic</span></span><a class="headerlink" href="#quapy.method.base.BaseQuantifier.probabilistic" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Indicates whether the quantifier is of type probabilistic or not</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>False (to be overridden)</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BaseQuantifier.quantify">
|
||
<em class="property"><span class="pre">abstract</span> </em><span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.BaseQuantifier.quantify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Generate class prevalence estimates for the sample’s instances</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BaseQuantifier.set_params">
|
||
<em class="property"><span class="pre">abstract</span> </em><span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.BaseQuantifier.set_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Set the parameters of the quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>parameters</strong> – dictionary of param-value pairs</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BinaryQuantifier">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.base.</span></span><span class="sig-name descname"><span class="pre">BinaryQuantifier</span></span><a class="headerlink" href="#quapy.method.base.BinaryQuantifier" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.base.BaseQuantifier</span></code></a></p>
|
||
<p>Abstract class of binary quantifiers, i.e., quantifiers estimating class prevalence values for only two classes
|
||
(typically, to be interpreted as one class and its complement).</p>
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.base.BinaryQuantifier.binary">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.method.base.BinaryQuantifier.binary" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Informs that the quantifier is binary</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>True</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.base.isaggregative">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.base.</span></span><span class="sig-name descname"><span class="pre">isaggregative</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.isaggregative" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Alias for property <cite>aggregative</cite></p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>model</strong> – the model</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>True if the model is aggregative, False otherwise</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.base.isbinary">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.base.</span></span><span class="sig-name descname"><span class="pre">isbinary</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.isbinary" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Alias for property <cite>binary</cite></p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>model</strong> – the model</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>True if the model is binary, False otherwise</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.base.isprobabilistic">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.base.</span></span><span class="sig-name descname"><span class="pre">isprobabilistic</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.base.isprobabilistic" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Alias for property <cite>probabilistic</cite></p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>model</strong> – the model</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>True if the model is probabilistic, False otherwise</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</section>
|
||
<section id="module-quapy.method.meta">
|
||
<span id="quapy-method-meta-module"></span><h2>quapy.method.meta module<a class="headerlink" href="#module-quapy.method.meta" title="Permalink to this headline">¶</a></h2>
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.EACC">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.meta.</span></span><span class="sig-name descname"><span class="pre">EACC</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_grid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">optim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_mod_sel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.EACC" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements an ensemble of <a class="reference internal" href="#quapy.method.aggregative.ACC" title="quapy.method.aggregative.ACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.ACC</span></code></a> quantifiers, as used by
|
||
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253517303652">Pérez-Gállego et al., 2019</a>.</p>
|
||
<p>Equivalent to:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">ensembleFactory</span><span class="p">(</span><span class="n">learner</span><span class="p">,</span> <span class="n">ACC</span><span class="p">,</span> <span class="n">param_grid</span><span class="p">,</span> <span class="n">optim</span><span class="p">,</span> <span class="n">param_mod_sel</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>See <a class="reference internal" href="#quapy.method.meta.ensembleFactory" title="quapy.method.meta.ensembleFactory"><code class="xref py py-meth docutils literal notranslate"><span class="pre">ensembleFactory()</span></code></a> for further details.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>param_grid</strong> – a dictionary with the grid of parameters to optimize for</p></li>
|
||
<li><p><strong>optim</strong> – a valid quantification or classification error, or a string name of it</p></li>
|
||
<li><p><strong>param_model_sel</strong> – a dictionary containing any keyworded argument to pass to
|
||
<a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ</span></code></a></p></li>
|
||
<li><p><strong>kwargs</strong> – kwargs for the class <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>an instance of <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.ECC">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.meta.</span></span><span class="sig-name descname"><span class="pre">ECC</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_grid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">optim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_mod_sel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.ECC" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements an ensemble of <a class="reference internal" href="#quapy.method.aggregative.CC" title="quapy.method.aggregative.CC"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.CC</span></code></a> quantifiers, as used by
|
||
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253517303652">Pérez-Gállego et al., 2019</a>.</p>
|
||
<p>Equivalent to:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">ensembleFactory</span><span class="p">(</span><span class="n">learner</span><span class="p">,</span> <span class="n">CC</span><span class="p">,</span> <span class="n">param_grid</span><span class="p">,</span> <span class="n">optim</span><span class="p">,</span> <span class="n">param_mod_sel</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>See <a class="reference internal" href="#quapy.method.meta.ensembleFactory" title="quapy.method.meta.ensembleFactory"><code class="xref py py-meth docutils literal notranslate"><span class="pre">ensembleFactory()</span></code></a> for further details.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>param_grid</strong> – a dictionary with the grid of parameters to optimize for</p></li>
|
||
<li><p><strong>optim</strong> – a valid quantification or classification error, or a string name of it</p></li>
|
||
<li><p><strong>param_model_sel</strong> – a dictionary containing any keyworded argument to pass to
|
||
<a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ</span></code></a></p></li>
|
||
<li><p><strong>kwargs</strong> – kwargs for the class <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>an instance of <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.EEMQ">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.meta.</span></span><span class="sig-name descname"><span class="pre">EEMQ</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_grid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">optim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_mod_sel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.EEMQ" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements an ensemble of <a class="reference internal" href="#quapy.method.aggregative.EMQ" title="quapy.method.aggregative.EMQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.EMQ</span></code></a> quantifiers.</p>
|
||
<p>Equivalent to:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">ensembleFactory</span><span class="p">(</span><span class="n">learner</span><span class="p">,</span> <span class="n">EMQ</span><span class="p">,</span> <span class="n">param_grid</span><span class="p">,</span> <span class="n">optim</span><span class="p">,</span> <span class="n">param_mod_sel</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>See <a class="reference internal" href="#quapy.method.meta.ensembleFactory" title="quapy.method.meta.ensembleFactory"><code class="xref py py-meth docutils literal notranslate"><span class="pre">ensembleFactory()</span></code></a> for further details.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>param_grid</strong> – a dictionary with the grid of parameters to optimize for</p></li>
|
||
<li><p><strong>optim</strong> – a valid quantification or classification error, or a string name of it</p></li>
|
||
<li><p><strong>param_model_sel</strong> – a dictionary containing any keyworded argument to pass to
|
||
<a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ</span></code></a></p></li>
|
||
<li><p><strong>kwargs</strong> – kwargs for the class <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>an instance of <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.EHDy">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.meta.</span></span><span class="sig-name descname"><span class="pre">EHDy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_grid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">optim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_mod_sel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.EHDy" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements an ensemble of <a class="reference internal" href="#quapy.method.aggregative.HDy" title="quapy.method.aggregative.HDy"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.HDy</span></code></a> quantifiers, as used by
|
||
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253517303652">Pérez-Gállego et al., 2019</a>.</p>
|
||
<p>Equivalent to:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">ensembleFactory</span><span class="p">(</span><span class="n">learner</span><span class="p">,</span> <span class="n">HDy</span><span class="p">,</span> <span class="n">param_grid</span><span class="p">,</span> <span class="n">optim</span><span class="p">,</span> <span class="n">param_mod_sel</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>See <a class="reference internal" href="#quapy.method.meta.ensembleFactory" title="quapy.method.meta.ensembleFactory"><code class="xref py py-meth docutils literal notranslate"><span class="pre">ensembleFactory()</span></code></a> for further details.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>param_grid</strong> – a dictionary with the grid of parameters to optimize for</p></li>
|
||
<li><p><strong>optim</strong> – a valid quantification or classification error, or a string name of it</p></li>
|
||
<li><p><strong>param_model_sel</strong> – a dictionary containing any keyworded argument to pass to
|
||
<a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ</span></code></a></p></li>
|
||
<li><p><strong>kwargs</strong> – kwargs for the class <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>an instance of <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.EPACC">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.meta.</span></span><span class="sig-name descname"><span class="pre">EPACC</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_grid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">optim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_mod_sel</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.EPACC" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implements an ensemble of <a class="reference internal" href="#quapy.method.aggregative.PACC" title="quapy.method.aggregative.PACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.PACC</span></code></a> quantifiers.</p>
|
||
<p>Equivalent to:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">ensembleFactory</span><span class="p">(</span><span class="n">learner</span><span class="p">,</span> <span class="n">PACC</span><span class="p">,</span> <span class="n">param_grid</span><span class="p">,</span> <span class="n">optim</span><span class="p">,</span> <span class="n">param_mod_sel</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>See <a class="reference internal" href="#quapy.method.meta.ensembleFactory" title="quapy.method.meta.ensembleFactory"><code class="xref py py-meth docutils literal notranslate"><span class="pre">ensembleFactory()</span></code></a> for further details.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>param_grid</strong> – a dictionary with the grid of parameters to optimize for</p></li>
|
||
<li><p><strong>optim</strong> – a valid quantification or classification error, or a string name of it</p></li>
|
||
<li><p><strong>param_model_sel</strong> – a dictionary containing any keyworded argument to pass to
|
||
<a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ</span></code></a></p></li>
|
||
<li><p><strong>kwargs</strong> – kwargs for the class <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>an instance of <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.Ensemble">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.meta.</span></span><span class="sig-name descname"><span class="pre">Ensemble</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">quantifier</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><span class="pre">quapy.method.base.BaseQuantifier</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">50</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">red_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">25</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">min_pos</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">policy</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'ave'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">max_sample_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">,</span> </span><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_jobs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.Ensemble" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.base.BaseQuantifier</span></code></a></p>
|
||
<dl class="py attribute">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.Ensemble.VALID_POLICIES">
|
||
<span class="sig-name descname"><span class="pre">VALID_POLICIES</span></span><em class="property"> <span class="pre">=</span> <span class="pre">{'ave',</span> <span class="pre">'ds',</span> <span class="pre">'mae',</span> <span class="pre">'mkld',</span> <span class="pre">'mnkld',</span> <span class="pre">'mrae',</span> <span class="pre">'mse',</span> <span class="pre">'ptr'}</span></em><a class="headerlink" href="#quapy.method.meta.Ensemble.VALID_POLICIES" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Implementation of the Ensemble methods for quantification described by
|
||
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253516300628">Pérez-Gállego et al., 2017</a>
|
||
and
|
||
<a class="reference external" href="https://www.sciencedirect.com/science/article/pii/S1566253517303652">Pérez-Gállego et al., 2019</a>.
|
||
The policies implemented include:</p>
|
||
<ul class="simple">
|
||
<li><p>Average (<cite>policy=’ave’</cite>): computes class prevalence estimates as the average of the estimates
|
||
returned by the base quantifiers.</p></li>
|
||
<li><p>Training Prevalence (<cite>policy=’ptr’</cite>): applies a dynamic selection to the ensemble’s members by retaining only
|
||
those members such that the class prevalence values in the samples they use as training set are closest to
|
||
preliminary class prevalence estimates computed as the average of the estimates of all the members. The final
|
||
estimate is recomputed by considering only the selected members.</p></li>
|
||
<li><p>Distribution Similarity (<cite>policy=’ds’</cite>): performs a dynamic selection of base members by retaining
|
||
the members trained on samples whose distribution of posterior probabilities is closest, in terms of the
|
||
Hellinger Distance, to the distribution of posterior probabilities in the test sample</p></li>
|
||
<li><p>Accuracy (<cite>policy=’<valid error name>’</cite>): performs a static selection of the ensemble members by
|
||
retaining those that minimize a quantification error measure, which is passed as an argument.</p></li>
|
||
</ul>
|
||
<p>Example:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">model</span> <span class="o">=</span> <span class="n">Ensemble</span><span class="p">(</span><span class="n">quantifier</span><span class="o">=</span><span class="n">ACC</span><span class="p">(</span><span class="n">LogisticRegression</span><span class="p">()),</span> <span class="n">size</span><span class="o">=</span><span class="mi">30</span><span class="p">,</span> <span class="n">policy</span><span class="o">=</span><span class="s1">'ave'</span><span class="p">,</span> <span class="n">n_jobs</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>quantifier</strong> – base quantification member of the ensemble</p></li>
|
||
<li><p><strong>size</strong> – number of members</p></li>
|
||
<li><p><strong>red_size</strong> – number of members to retain after selection (depending on the policy)</p></li>
|
||
<li><p><strong>min_pos</strong> – minimum number of positive instances to consider a sample as valid</p></li>
|
||
<li><p><strong>policy</strong> – the selection policy; available policies include: <cite>ave</cite> (default), <cite>ptr</cite>, <cite>ds</cite>, and accuracy
|
||
(which is instantiated via a valid error name, e.g., <cite>mae</cite>)</p></li>
|
||
<li><p><strong>max_sample_size</strong> – maximum number of instances to consider in the samples (set to None
|
||
to indicate no limit, default)</p></li>
|
||
<li><p><strong>val_split</strong> – a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
|
||
validation split, or a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> (the split itself).</p></li>
|
||
<li><p><strong>n_jobs</strong> – number of parallel workers (default 1)</p></li>
|
||
<li><p><strong>verbose</strong> – set to True (default is False) to get some information in standard output</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.Ensemble.aggregative">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">aggregative</span></span><a class="headerlink" href="#quapy.method.meta.Ensemble.aggregative" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Indicates that the quantifier is not aggregative.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>False</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.Ensemble.binary">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">binary</span></span><a class="headerlink" href="#quapy.method.meta.Ensemble.binary" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Returns a boolean indicating whether the base quantifiers are binary or not</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>boolean</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.Ensemble.classes_">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.method.meta.Ensemble.classes_" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Class labels, in the same order in which class prevalence values are to be computed.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>array-like</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.Ensemble.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">val_split</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Union</span><span class="p"><span class="pre">[</span></span><span class="pre">float</span><span class="p"><span class="pre">,</span> </span><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a><span class="p"><span class="pre">]</span></span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.Ensemble.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains a quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>data</strong> – a <a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.data.base.LabelledCollection</span></code></a> consisting of the training data</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.Ensemble.get_params">
|
||
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.Ensemble.get_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>This function should not be used within <a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ</span></code></a> (is here for compatibility
|
||
with the abstract class).
|
||
Instead, use <cite>Ensemble(GridSearchQ(q),…)</cite>, with <cite>q</cite> a Quantifier (recommended), or
|
||
<cite>Ensemble(Q(GridSearchCV(l)))</cite> with <cite>Q</cite> a quantifier class that has a learner <cite>l</cite> optimized for</p>
|
||
<blockquote>
|
||
<div><p>classification (not recommended).</p>
|
||
</div></blockquote>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>raises an Exception</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.Ensemble.probabilistic">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">probabilistic</span></span><a class="headerlink" href="#quapy.method.meta.Ensemble.probabilistic" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Indicates that the quantifier is not probabilistic.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>False</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.Ensemble.quantify">
|
||
<span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.Ensemble.quantify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Generate class prevalence estimates for the sample’s instances</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.Ensemble.set_params">
|
||
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.Ensemble.set_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>This function should not be used within <a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ</span></code></a> (is here for compatibility
|
||
with the abstract class).
|
||
Instead, use <cite>Ensemble(GridSearchQ(q),…)</cite>, with <cite>q</cite> a Quantifier (recommended), or
|
||
<cite>Ensemble(Q(GridSearchCV(l)))</cite> with <cite>Q</cite> a quantifier class that has a learner <cite>l</cite> optimized for</p>
|
||
<blockquote>
|
||
<div><p>classification (not recommended).</p>
|
||
</div></blockquote>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>parameters</strong> – dictionary</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>raises an Exception</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.ensembleFactory">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.meta.</span></span><span class="sig-name descname"><span class="pre">ensembleFactory</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">base_quantifier_class</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_grid</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">optim</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param_model_sel</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">dict</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.ensembleFactory" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Ensemble factory. Provides a unified interface for instantiating ensembles that can be optimized (via model
|
||
selection for quantification) for a given evaluation metric using <a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ</span></code></a>.
|
||
If the evaluation metric is classification-oriented
|
||
(instead of quantification-oriented), then the optimization will be carried out via sklearn’s
|
||
<a class="reference external" href="https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html">GridSearchCV</a>.</p>
|
||
<p>Example to instantiate an <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a> based on <a class="reference internal" href="#quapy.method.aggregative.PACC" title="quapy.method.aggregative.PACC"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.aggregative.PACC</span></code></a>
|
||
in which the base members are optimized for <a class="reference internal" href="quapy.html#quapy.error.mae" title="quapy.error.mae"><code class="xref py py-meth docutils literal notranslate"><span class="pre">quapy.error.mae()</span></code></a> via
|
||
<a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ</span></code></a>. The ensemble follows the policy <cite>Accuracy</cite> based
|
||
on <a class="reference internal" href="quapy.html#quapy.error.mae" title="quapy.error.mae"><code class="xref py py-meth docutils literal notranslate"><span class="pre">quapy.error.mae()</span></code></a> (the same measure being optimized),
|
||
meaning that a static selection of members of the ensemble is made based on their performance
|
||
in terms of this error.</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">param_grid</span> <span class="o">=</span> <span class="p">{</span>
|
||
<span class="gp">>>> </span> <span class="s1">'C'</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">logspace</span><span class="p">(</span><span class="o">-</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">7</span><span class="p">),</span>
|
||
<span class="gp">>>> </span> <span class="s1">'class_weight'</span><span class="p">:</span> <span class="p">[</span><span class="s1">'balanced'</span><span class="p">,</span> <span class="kc">None</span><span class="p">]</span>
|
||
<span class="gp">>>> </span><span class="p">}</span>
|
||
<span class="gp">>>> </span><span class="n">param_mod_sel</span> <span class="o">=</span> <span class="p">{</span>
|
||
<span class="gp">>>> </span> <span class="s1">'sample_size'</span><span class="p">:</span> <span class="mi">500</span><span class="p">,</span>
|
||
<span class="gp">>>> </span> <span class="s1">'protocol'</span><span class="p">:</span> <span class="s1">'app'</span>
|
||
<span class="gp">>>> </span><span class="p">}</span>
|
||
<span class="gp">>>> </span><span class="n">common</span><span class="o">=</span><span class="p">{</span>
|
||
<span class="gp">>>> </span> <span class="s1">'max_sample_size'</span><span class="p">:</span> <span class="mi">1000</span><span class="p">,</span>
|
||
<span class="gp">>>> </span> <span class="s1">'n_jobs'</span><span class="p">:</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span>
|
||
<span class="gp">>>> </span> <span class="s1">'param_grid'</span><span class="p">:</span> <span class="n">param_grid</span><span class="p">,</span>
|
||
<span class="gp">>>> </span> <span class="s1">'param_mod_sel'</span><span class="p">:</span> <span class="n">param_mod_sel</span><span class="p">,</span>
|
||
<span class="gp">>>> </span><span class="p">}</span>
|
||
<span class="go">>>></span>
|
||
<span class="gp">>>> </span><span class="n">ensembleFactory</span><span class="p">(</span><span class="n">LogisticRegression</span><span class="p">(),</span> <span class="n">PACC</span><span class="p">,</span> <span class="n">optim</span><span class="o">=</span><span class="s1">'mae'</span><span class="p">,</span> <span class="n">policy</span><span class="o">=</span><span class="s1">'mae'</span><span class="p">,</span> <span class="o">**</span><span class="n">common</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – sklearn’s Estimator that generates a classifier</p></li>
|
||
<li><p><strong>base_quantifier_class</strong> – a class of quantifiers</p></li>
|
||
<li><p><strong>param_grid</strong> – a dictionary with the grid of parameters to optimize for</p></li>
|
||
<li><p><strong>optim</strong> – a valid quantification or classification error, or a string name of it</p></li>
|
||
<li><p><strong>param_model_sel</strong> – a dictionary containing any keyworded argument to pass to
|
||
<a class="reference internal" href="quapy.html#quapy.model_selection.GridSearchQ" title="quapy.model_selection.GridSearchQ"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.model_selection.GridSearchQ</span></code></a></p></li>
|
||
<li><p><strong>kwargs</strong> – kwargs for the class <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>an instance of <a class="reference internal" href="#quapy.method.meta.Ensemble" title="quapy.method.meta.Ensemble"><code class="xref py py-class docutils literal notranslate"><span class="pre">Ensemble</span></code></a></p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.meta.get_probability_distribution">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.meta.</span></span><span class="sig-name descname"><span class="pre">get_probability_distribution</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">posterior_probabilities</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bins</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">8</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.meta.get_probability_distribution" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Gets a histogram out of the posterior probabilities (only for the binary case).</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>posterior_probabilities</strong> – array-like of shape <cite>(n_instances, 2,)</cite></p></li>
|
||
<li><p><strong>bins</strong> – integer</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> with the relative frequencies for each bin (for the positive class only)</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</section>
|
||
<section id="module-quapy.method.neural">
|
||
<span id="quapy-method-neural-module"></span><h2>quapy.method.neural module<a class="headerlink" href="#module-quapy.method.neural" title="Permalink to this headline">¶</a></h2>
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetModule">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.neural.</span></span><span class="sig-name descname"><span class="pre">QuaNetModule</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">doc_embedding_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_classes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">stats_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">64</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_nlayers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ff_layers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[1024,</span> <span class="pre">512]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bidirectional</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">qdrop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">order_by</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetModule" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">torch.nn.modules.module.Module</span></code></p>
|
||
<p>Implements the <a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/3269206.3269287">QuaNet</a> forward pass.
|
||
See <a class="reference internal" href="#quapy.method.neural.QuaNetTrainer" title="quapy.method.neural.QuaNetTrainer"><code class="xref py py-class docutils literal notranslate"><span class="pre">QuaNetTrainer</span></code></a> for training QuaNet.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>doc_embedding_size</strong> – integer, the dimensionality of the document embeddings</p></li>
|
||
<li><p><strong>n_classes</strong> – integer, number of classes</p></li>
|
||
<li><p><strong>stats_size</strong> – integer, number of statistics estimated by simple quantification methods</p></li>
|
||
<li><p><strong>lstm_hidden_size</strong> – integer, hidden dimensionality of the LSTM cell</p></li>
|
||
<li><p><strong>lstm_nlayers</strong> – integer, number of LSTM layers</p></li>
|
||
<li><p><strong>ff_layers</strong> – list of integers, dimensions of the densely-connected FF layers on top of the
|
||
quantification embedding</p></li>
|
||
<li><p><strong>bidirectional</strong> – boolean, whether or not to use bidirectional LSTM</p></li>
|
||
<li><p><strong>qdrop_p</strong> – float, dropout probability</p></li>
|
||
<li><p><strong>order_by</strong> – integer, class for which the document embeddings are to be sorted</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetModule.device">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">device</span></span><a class="headerlink" href="#quapy.method.neural.QuaNetModule.device" title="Permalink to this definition">¶</a></dt>
|
||
<dd></dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetModule.forward">
|
||
<span class="sig-name descname"><span class="pre">forward</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">doc_embeddings</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">doc_posteriors</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">statistics</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetModule.forward" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Defines the computation performed at every call.</p>
|
||
<p>Should be overridden by all subclasses.</p>
|
||
<div class="admonition note">
|
||
<p class="admonition-title">Note</p>
|
||
<p>Although the recipe for forward pass needs to be defined within
|
||
this function, one should call the <code class="xref py py-class docutils literal notranslate"><span class="pre">Module</span></code> instance afterwards
|
||
instead of this since the former takes care of running the
|
||
registered hooks while the latter silently ignores them.</p>
|
||
</div>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.neural.</span></span><span class="sig-name descname"><span class="pre">QuaNetTrainer</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">learner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_size</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">n_epochs</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tr_iter_per_poch</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">500</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">va_iter_per_poch</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lr</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.001</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_hidden_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">64</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">lstm_nlayers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ff_layers</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[1024,</span> <span class="pre">512]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bidirectional</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">qdrop_p</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.5</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">patience</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpointdir</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'../checkpoint'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">checkpointname</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">device</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'cuda'</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.base.BaseQuantifier</span></code></a></p>
|
||
<p>Implementation of <a class="reference external" href="https://dl.acm.org/doi/abs/10.1145/3269206.3269287">QuaNet</a>, a neural network for
|
||
quantification. This implementation uses <a class="reference external" href="https://pytorch.org/">PyTorch</a> and can take advantage of GPU
|
||
for speeding-up the training phase.</p>
|
||
<p>Example:</p>
|
||
<div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="kn">import</span> <span class="nn">quapy</span> <span class="k">as</span> <span class="nn">qp</span>
|
||
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">quapy.method.meta</span> <span class="kn">import</span> <span class="n">QuaNet</span>
|
||
<span class="gp">>>> </span><span class="kn">from</span> <span class="nn">quapy.classification.neural</span> <span class="kn">import</span> <span class="n">NeuralClassifierTrainer</span><span class="p">,</span> <span class="n">CNNnet</span>
|
||
<span class="go">>>></span>
|
||
<span class="gp">>>> </span><span class="c1"># use samples of 100 elements</span>
|
||
<span class="gp">>>> </span><span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">'SAMPLE_SIZE'</span><span class="p">]</span> <span class="o">=</span> <span class="mi">100</span>
|
||
<span class="go">>>></span>
|
||
<span class="gp">>>> </span><span class="c1"># load the kindle dataset as text, and convert words to numerical indexes</span>
|
||
<span class="gp">>>> </span><span class="n">dataset</span> <span class="o">=</span> <span class="n">qp</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fetch_reviews</span><span class="p">(</span><span class="s1">'kindle'</span><span class="p">,</span> <span class="n">pickle</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
||
<span class="gp">>>> </span><span class="n">qp</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">preprocessing</span><span class="o">.</span><span class="n">index</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">min_df</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
|
||
<span class="go">>>></span>
|
||
<span class="gp">>>> </span><span class="c1"># the text classifier is a CNN trained by NeuralClassifierTrainer</span>
|
||
<span class="gp">>>> </span><span class="n">cnn</span> <span class="o">=</span> <span class="n">CNNnet</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">vocabulary_size</span><span class="p">,</span> <span class="n">dataset</span><span class="o">.</span><span class="n">n_classes</span><span class="p">)</span>
|
||
<span class="gp">>>> </span><span class="n">learner</span> <span class="o">=</span> <span class="n">NeuralClassifierTrainer</span><span class="p">(</span><span class="n">cnn</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">'cuda'</span><span class="p">)</span>
|
||
<span class="go">>>></span>
|
||
<span class="gp">>>> </span><span class="c1"># train QuaNet (QuaNet is an alias to QuaNetTrainer)</span>
|
||
<span class="gp">>>> </span><span class="n">model</span> <span class="o">=</span> <span class="n">QuaNet</span><span class="p">(</span><span class="n">learner</span><span class="p">,</span> <span class="n">qp</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s1">'SAMPLE_SIZE'</span><span class="p">],</span> <span class="n">device</span><span class="o">=</span><span class="s1">'cuda'</span><span class="p">)</span>
|
||
<span class="gp">>>> </span><span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
|
||
<span class="gp">>>> </span><span class="n">estim_prevalence</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">quantify</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">test</span><span class="o">.</span><span class="n">instances</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>learner</strong> – an object implementing <cite>fit</cite> (i.e., that can be trained on labelled data),
|
||
<cite>predict_proba</cite> (i.e., that can generate posterior probabilities of unlabelled examples) and
|
||
<cite>transform</cite> (i.e., that can generate embedded representations of the unlabelled instances).</p></li>
|
||
<li><p><strong>sample_size</strong> – integer, the sample size</p></li>
|
||
<li><p><strong>n_epochs</strong> – integer, maximum number of training epochs</p></li>
|
||
<li><p><strong>tr_iter_per_poch</strong> – integer, number of training iterations before considering an epoch complete</p></li>
|
||
<li><p><strong>va_iter_per_poch</strong> – integer, number of validation iterations to perform after each epoch</p></li>
|
||
<li><p><strong>lr</strong> – float, the learning rate</p></li>
|
||
<li><p><strong>lstm_hidden_size</strong> – integer, hidden dimensionality of the LSTM cells</p></li>
|
||
<li><p><strong>lstm_nlayers</strong> – integer, number of LSTM layers</p></li>
|
||
<li><p><strong>ff_layers</strong> – list of integers, dimensions of the densely-connected FF layers on top of the
|
||
quantification embedding</p></li>
|
||
<li><p><strong>bidirectional</strong> – boolean, indicates whether the LSTM is bidirectional or not</p></li>
|
||
<li><p><strong>qdrop_p</strong> – float, dropout probability</p></li>
|
||
<li><p><strong>patience</strong> – integer, number of epochs showing no improvement in the validation set before stopping the
|
||
training phase (early stopping)</p></li>
|
||
<li><p><strong>checkpointdir</strong> – string, a path where to store models’ checkpoints</p></li>
|
||
<li><p><strong>checkpointname</strong> – string (optional), the name of the model’s checkpoint</p></li>
|
||
<li><p><strong>device</strong> – string, indicate “cpu” or “cuda”</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.classes_">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.classes_" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Class labels, in the same order in which class prevalence values are to be computed.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>array-like</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.clean_checkpoint">
|
||
<span class="sig-name descname"><span class="pre">clean_checkpoint</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.clean_checkpoint" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Removes the checkpoint</p>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.clean_checkpoint_dir">
|
||
<span class="sig-name descname"><span class="pre">clean_checkpoint_dir</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.clean_checkpoint_dir" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Removes anything contained in the checkpoint directory</p>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">fit_learner</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Trains QuaNet.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>data</strong> – the training data on which to train QuaNet. If <cite>fit_learner=True</cite>, the data will be split in
|
||
40/40/20 for training the classifier, training QuaNet, and validating QuaNet, respectively. If
|
||
<cite>fit_learner=False</cite>, the data will be split in 66/34 for training QuaNet and validating it, respectively.</p></li>
|
||
<li><p><strong>fit_learner</strong> – if True, trains the classifier on a split containing 40% of the data</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.get_params">
|
||
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.get_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Return the current parameters of the quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>deep</strong> – for compatibility with sklearn</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>a dictionary of param-value pairs</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.quantify">
|
||
<span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.quantify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Generate class prevalence estimates for the sample’s instances</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>np.ndarray</cite> of shape <cite>(self.n_classes_,)</cite> with class prevalence estimates.</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.QuaNetTrainer.set_params">
|
||
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.QuaNetTrainer.set_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Set the parameters of the quantifier.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>parameters</strong> – dictionary of param-value pairs</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
<dl class="py function">
|
||
<dt class="sig sig-object py" id="quapy.method.neural.mae_loss">
|
||
<span class="sig-prename descclassname"><span class="pre">quapy.method.neural.</span></span><span class="sig-name descname"><span class="pre">mae_loss</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">output</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.neural.mae_loss" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Torch-like wrapper for the Mean Absolute Error</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>output</strong> – predictions</p></li>
|
||
<li><p><strong>target</strong> – ground truth values</p></li>
|
||
</ul>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>mean absolute error loss</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</section>
|
||
<section id="module-quapy.method.non_aggregative">
|
||
<span id="quapy-method-non-aggregative-module"></span><h2>quapy.method.non_aggregative module<a class="headerlink" href="#module-quapy.method.non_aggregative" title="Permalink to this headline">¶</a></h2>
|
||
<dl class="py class">
|
||
<dt class="sig sig-object py" id="quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation">
|
||
<em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">quapy.method.non_aggregative.</span></span><span class="sig-name descname"><span class="pre">MaximumLikelihoodPrevalenceEstimation</span></span><a class="headerlink" href="#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Bases: <a class="reference internal" href="#quapy.method.base.BaseQuantifier" title="quapy.method.base.BaseQuantifier"><code class="xref py py-class docutils literal notranslate"><span class="pre">quapy.method.base.BaseQuantifier</span></code></a></p>
|
||
<p>The <cite>Maximum Likelihood Prevalence Estimation</cite> (MLPE) method is a lazy method that assumes there is no prior
|
||
probability shift between training and test instances (put it other way, that the i.i.d. assumpion holds).
|
||
The estimation of class prevalence values for any test sample is always (i.e., irrespective of the test sample
|
||
itself) the class prevalence seen during training. This method is considered to be a lower-bound quantifier that
|
||
any quantification method should beat.</p>
|
||
<dl class="py property">
|
||
<dt class="sig sig-object py" id="quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.classes_">
|
||
<em class="property"><span class="pre">property</span> </em><span class="sig-name descname"><span class="pre">classes_</span></span><a class="headerlink" href="#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.classes_" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Number of classes</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Returns</dt>
|
||
<dd class="field-odd"><p>integer</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.fit">
|
||
<span class="sig-name descname"><span class="pre">fit</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><a class="reference internal" href="quapy.data.html#quapy.data.base.LabelledCollection" title="quapy.data.base.LabelledCollection"><span class="pre">quapy.data.base.LabelledCollection</span></a></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.fit" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Computes the training prevalence and stores it.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>data</strong> – the training sample</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>self</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.get_params">
|
||
<span class="sig-name descname"><span class="pre">get_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">deep</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.get_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Does nothing, since this learner has no parameters.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>deep</strong> – for compatibility with sklearn</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p><cite>None</cite></p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.quantify">
|
||
<span class="sig-name descname"><span class="pre">quantify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">instances</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.quantify" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Ignores the input instances and returns, as the class prevalence estimantes, the training prevalence.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>instances</strong> – array-like (ignored)</p>
|
||
</dd>
|
||
<dt class="field-even">Returns</dt>
|
||
<dd class="field-even"><p>the class prevalence seen during training</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
<dl class="py method">
|
||
<dt class="sig sig-object py" id="quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.set_params">
|
||
<span class="sig-name descname"><span class="pre">set_params</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#quapy.method.non_aggregative.MaximumLikelihoodPrevalenceEstimation.set_params" title="Permalink to this definition">¶</a></dt>
|
||
<dd><p>Does nothing, since this learner has no parameters.</p>
|
||
<dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><p><strong>parameters</strong> – dictionary of param-value pairs (ignored)</p>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</dd></dl>
|
||
|
||
</section>
|
||
<section id="module-quapy.method">
|
||
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-quapy.method" title="Permalink to this headline">¶</a></h2>
|
||
</section>
|
||
</section>
|
||
|
||
|
||
<div class="clearer"></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
||
<div class="sphinxsidebarwrapper">
|
||
<h3><a href="index.html">Table of Contents</a></h3>
|
||
<ul>
|
||
<li><a class="reference internal" href="#">quapy.method package</a><ul>
|
||
<li><a class="reference internal" href="#submodules">Submodules</a></li>
|
||
<li><a class="reference internal" href="#module-quapy.method.aggregative">quapy.method.aggregative module</a></li>
|
||
<li><a class="reference internal" href="#module-quapy.method.base">quapy.method.base module</a></li>
|
||
<li><a class="reference internal" href="#module-quapy.method.meta">quapy.method.meta module</a></li>
|
||
<li><a class="reference internal" href="#module-quapy.method.neural">quapy.method.neural module</a></li>
|
||
<li><a class="reference internal" href="#module-quapy.method.non_aggregative">quapy.method.non_aggregative module</a></li>
|
||
<li><a class="reference internal" href="#module-quapy.method">Module contents</a></li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
|
||
<h4>Previous topic</h4>
|
||
<p class="topless"><a href="quapy.data.html"
|
||
title="previous chapter">quapy.data package</a></p>
|
||
<div role="note" aria-label="source link">
|
||
<h3>This Page</h3>
|
||
<ul class="this-page-menu">
|
||
<li><a href="_sources/quapy.method.rst.txt"
|
||
rel="nofollow">Show Source</a></li>
|
||
</ul>
|
||
</div>
|
||
<div id="searchbox" style="display: none" role="search">
|
||
<h3 id="searchlabel">Quick search</h3>
|
||
<div class="searchformwrapper">
|
||
<form class="search" action="search.html" method="get">
|
||
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
|
||
<input type="submit" value="Go" />
|
||
</form>
|
||
</div>
|
||
</div>
|
||
<script>$('#searchbox').show(0);</script>
|
||
</div>
|
||
</div>
|
||
<div class="clearer"></div>
|
||
</div>
|
||
<div class="related" role="navigation" aria-label="related navigation">
|
||
<h3>Navigation</h3>
|
||
<ul>
|
||
<li class="right" style="margin-right: 10px">
|
||
<a href="genindex.html" title="General Index"
|
||
>index</a></li>
|
||
<li class="right" >
|
||
<a href="py-modindex.html" title="Python Module Index"
|
||
>modules</a> |</li>
|
||
<li class="right" >
|
||
<a href="quapy.data.html" title="quapy.data package"
|
||
>previous</a> |</li>
|
||
<li class="nav-item nav-item-0"><a href="index.html">QuaPy 0.1.6 documentation</a> »</li>
|
||
<li class="nav-item nav-item-1"><a href="modules.html" >quapy</a> »</li>
|
||
<li class="nav-item nav-item-2"><a href="quapy.html" >quapy package</a> »</li>
|
||
<li class="nav-item nav-item-this"><a href="">quapy.method package</a></li>
|
||
</ul>
|
||
</div>
|
||
<div class="footer" role="contentinfo">
|
||
© Copyright 2021, Alejandro Moreo.
|
||
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.2.0.
|
||
</div>
|
||
</body>
|
||
</html> |