88 lines
1.7 KiB
Python
88 lines
1.7 KiB
Python
from sklearn.metrics import f1_score
|
|
import numpy as np
|
|
import quapy as qp
|
|
|
|
|
|
|
|
def f1e(y_true, y_pred):
|
|
return 1. - f1_score(y_true, y_pred, average='macro')
|
|
|
|
|
|
def acce(y_true, y_pred):
|
|
return 1. - (y_true == y_pred).mean()
|
|
|
|
|
|
def mae(prevs, prevs_hat):
|
|
return ae(prevs, prevs_hat).mean()
|
|
|
|
|
|
def ae(p, p_hat):
|
|
assert p.shape == p_hat.shape, 'wrong shape'
|
|
return abs(p_hat-p).mean(axis=-1)
|
|
|
|
|
|
def mse(prevs, prevs_hat):
|
|
return se(prevs, prevs_hat).mean()
|
|
|
|
|
|
def se(p, p_hat):
|
|
return ((p_hat-p)**2).mean(axis=-1)
|
|
|
|
|
|
def mkld(prevs, prevs_hat):
|
|
return kld(prevs, prevs_hat).mean()
|
|
|
|
|
|
def kld(p, p_hat, eps=None):
|
|
eps = __check_eps(eps)
|
|
sp = p+eps
|
|
sp_hat = p_hat + eps
|
|
return (sp*np.log(sp/sp_hat)).sum(axis=-1)
|
|
|
|
|
|
def mnkld(prevs, prevs_hat):
|
|
return nkld(prevs, prevs_hat).mean()
|
|
|
|
|
|
def nkld(p, p_hat, eps=None):
|
|
ekld = np.exp(kld(p, p_hat, eps))
|
|
return 2. * ekld / (1 + ekld) - 1.
|
|
|
|
|
|
def mrae(p, p_hat, eps=None):
|
|
return rae(p, p_hat, eps).mean()
|
|
|
|
|
|
def rae(p, p_hat, eps=None):
|
|
eps = __check_eps(eps)
|
|
p = smooth(p, eps)
|
|
p_hat = smooth(p_hat, eps)
|
|
return (abs(p-p_hat)/p).mean(axis=-1)
|
|
|
|
|
|
def smooth(p, eps):
|
|
n_classes = p.shape[-1]
|
|
return (p+eps)/(eps*n_classes + 1)
|
|
|
|
|
|
def __check_eps(eps):
|
|
sample_size = qp.environ['SAMPLE_SIZE']
|
|
if eps is None:
|
|
if sample_size is None:
|
|
raise ValueError('eps was not defined, and qp.environ["SAMPLE_SIZE"] was not set')
|
|
else:
|
|
eps = 1. / (2. * sample_size)
|
|
return eps
|
|
|
|
|
|
CLASSIFICATION_ERROR = {f1e, acce}
|
|
QUANTIFICATION_ERROR = {mae, mrae, mse, mkld, mnkld}
|
|
|
|
f1_error = f1e
|
|
acc_error = acce
|
|
mean_absolute_error = mae
|
|
absolute_error = ae
|
|
mean_relative_absolute_error = mrae
|
|
relative_absolute_error = rae
|
|
|