QuaPy/quapy/method/neural.py

268 lines
12 KiB
Python

import os
from pathlib import Path
import torch
from torch.nn import MSELoss
from torch.nn.functional import relu
from tqdm import tqdm
from method.aggregative import *
from util import EarlyStop
class QuaNetTrainer(BaseQuantifier):
def __init__(self,
learner,
sample_size,
n_epochs=500,
tr_iter_per_poch=200,
va_iter_per_poch=21,
lr=1e-3,
lstm_hidden_size=64,
lstm_nlayers=1,
ff_layers=[1024, 512],
bidirectional=True,
qdrop_p=0.5,
patience=10, checkpointpath='../checkpoint/quanet.dat', device='cuda'):
assert hasattr(learner, 'transform'), \
f'the learner {learner.__class__.__name__} does not seem to be able to produce document embeddings ' \
f'since it does not implement the method "transform"'
assert hasattr(learner, 'predict_proba'), \
f'the learner {learner.__class__.__name__} does not seem to be able to produce posterior probabilities ' \
f'since it does not implement the method "predict_proba"'
self.learner = learner
self.sample_size = sample_size
self.n_epochs = n_epochs
self.tr_iter = tr_iter_per_poch
self.va_iter = va_iter_per_poch
self.lr = lr
self.quanet_params = {
'lstm_hidden_size': lstm_hidden_size,
'lstm_nlayers': lstm_nlayers,
'ff_layers': ff_layers,
'bidirectional': bidirectional,
'qdrop_p': qdrop_p
}
self.patience = patience
self.checkpointpath = checkpointpath
os.makedirs(Path(checkpointpath).parent, exist_ok=True)
self.device = torch.device(device)
self.__check_params_colision(self.quanet_params, self.learner.get_params())
def fit(self, data: LabelledCollection, fit_learner=True, *args):
"""
:param data: the training data on which to train QuaNet. If fit_learner=True, the data will be split in
40/40/20 for training the classifier, training QuaNet, and validating QuaNet, respectively. If
fit_learner=False, the data will be split in 66/34 for training QuaNet and validating it, respectively.
:param fit_learner: if true, trains the classifier on a split containing 40% of the data
:param args: unused
:return: self
"""
# split: 40% for training classification, 40% for training quapy, and 20% for validating quapy
self.learner, unused_data = \
training_helper(self.learner, data, fit_learner, ensure_probabilistic=True, val_split=0.6)
train_data, valid_data = unused_data.split_stratified(0.66) # 0.66 split of 60% makes 40% and 20%
# compute the posterior probabilities of the instances
valid_posteriors = self.learner.predict_proba(valid_data.instances)
train_posteriors = self.learner.predict_proba(train_data.instances)
# turn instances' indexes into embeddings
valid_data.instances = self.learner.transform(valid_data.instances)
train_data.instances = self.learner.transform(train_data.instances)
# estimate the hard and soft stats tpr and fpr of the classifier
self.tr_prev = data.prevalence()
self.quantifiers = [
ClassifyAndCount(self.learner).fit(data, fit_learner=False),
AdjustedClassifyAndCount(self.learner).fit(data, fit_learner=False),
ProbabilisticClassifyAndCount(self.learner).fit(data, fit_learner=False),
ProbabilisticAdjustedClassifyAndCount(self.learner).fit(data, fit_learner=False),
ExpectationMaximizationQuantifier(self.learner).fit(data, fit_learner=False),
]
self.status = {
'tr-loss': -1,
'va-loss': -1,
}
self.quanet = QuaNetModule(
doc_embedding_size=train_data.instances.shape[1],
n_classes=data.n_classes,
stats_size=len(self.quantifiers) * data.n_classes,
**self.quanet_params
).to(self.device)
self.optim = torch.optim.Adam(self.quanet.parameters(), lr=self.lr)
early_stop = EarlyStop(self.patience, lower_is_better=True)
checkpoint = self.checkpointpath
for epoch_i in range(1, self.n_epochs):
self.epoch(train_data, train_posteriors, self.tr_iter, epoch_i, early_stop, train=True)
self.epoch(valid_data, valid_posteriors, self.va_iter, epoch_i, early_stop, train=False)
early_stop(self.status['va-loss'], epoch_i)
if early_stop.IMPROVED:
torch.save(self.quanet.state_dict(), checkpoint)
elif early_stop.STOP:
print(f'training ended by patience exhausted; loading best model parameters in {checkpoint} '
f'for epoch {early_stop.best_epoch}')
self.quanet.load_state_dict(torch.load(checkpoint))
self.epoch(valid_data, valid_posteriors, self.va_iter, epoch_i, early_stop, train=True)
break
return self
def get_aggregative_estims(self, posteriors):
label_predictions = np.argmax(posteriors, axis=-1)
prevs_estim = []
for quantifier in self.quantifiers:
predictions = posteriors if isprobabilistic(quantifier) else label_predictions
prevs_estim.append(quantifier.aggregate(predictions))
return np.asarray(prevs_estim).flatten()
def quantify(self, instances, *args):
posteriors = self.learner.predict_proba(instances)
embeddings = self.learner.transform(instances)
quant_estims = self.get_aggregative_estims(posteriors)
self.quanet.eval()
with torch.no_grad():
prevalence = self.quanet.forward(embeddings, posteriors, quant_estims).item()
return prevalence
def epoch(self, data: LabelledCollection, posteriors, iterations, epoch, early_stop, train):
mse_loss = MSELoss()
prevpoints = F.get_nprevpoints_approximation(iterations, self.quanet.n_classes)
self.quanet.train(mode=train)
losses = []
pbar = tqdm(data.artificial_sampling_index_generator(self.sample_size, prevpoints))
for it, index in enumerate(pbar):
sample_data = data.sampling_from_index(index)
sample_posteriors = posteriors[index]
quant_estims = self.get_aggregative_estims(sample_posteriors)
ptrue = torch.as_tensor([sample_data.prevalence()], dtype=torch.float, device=self.device)
if train:
self.optim.zero_grad()
phat = self.quanet.forward(sample_data.instances, sample_posteriors, quant_estims)
loss = mse_loss(phat, ptrue)
loss.backward()
self.optim.step()
else:
with torch.no_grad():
phat = self.quanet.forward(sample_data.instances, sample_posteriors, quant_estims)
loss = mse_loss(phat, ptrue)
losses.append(loss.item())
self.status['tr-loss' if train else 'va-loss'] = np.mean(losses[-10:])
pbar.set_description(f'[QuaNet][{"training" if train else "validating"}] '
f'epoch={epoch} [it={it}/{iterations}]\t'
f'tr-loss={self.status["tr-loss"]:.5f} '
f'val-loss={self.status["va-loss"]:.5f} '
f'patience={early_stop.patience}/{early_stop.PATIENCE_LIMIT}')
def get_params(self, deep=True):
return {**self.learner.get_params(), **self.quanet_params}
def set_params(self, **parameters):
learner_params={}
for key, val in parameters:
if key in self.quanet_params:
self.quanet_params[key]=val
else:
learner_params[key] = val
self.learner.set_params(**learner_params)
def __check_params_colision(self, quanet_params, learner_params):
quanet_keys = set(quanet_params.keys())
learner_keys = set(learner_params.keys())
intersection = quanet_keys.intersection(learner_keys)
if len(intersection) > 0:
raise ValueError(f'the use of parameters {intersection} is ambiguous sine those can refer to '
f'the parameters of QuaNet or the learner {self.learner.__class__.__name__}')
class QuaNetModule(torch.nn.Module):
def __init__(self,
doc_embedding_size,
n_classes,
stats_size,
lstm_hidden_size=64,
lstm_nlayers=1,
ff_layers=[1024, 512],
bidirectional=True,
qdrop_p=0.5,
order_by=None):
super().__init__()
self.n_classes = n_classes
self.order_by = order_by
self.hidden_size = lstm_hidden_size
self.nlayers = lstm_nlayers
self.bidirectional = bidirectional
self.ndirections = 2 if self.bidirectional else 1
self.qdrop_p = qdrop_p
self.lstm = torch.nn.LSTM(doc_embedding_size + n_classes, # +n_classes stands for the posterior probs. (concatenated)
lstm_hidden_size, lstm_nlayers, bidirectional=bidirectional,
dropout=qdrop_p, batch_first=True)
self.dropout = torch.nn.Dropout(self.qdrop_p)
lstm_output_size = self.hidden_size * self.ndirections
ff_input_size = lstm_output_size + stats_size
prev_size = ff_input_size
self.ff_layers = torch.nn.ModuleList()
for lin_size in ff_layers:
self.ff_layers.append(torch.nn.Linear(prev_size, lin_size))
prev_size = lin_size
self.output = torch.nn.Linear(prev_size, n_classes)
@property
def device(self):
return torch.device('cuda') if next(self.parameters()).is_cuda else torch.device('cpu')
def init_hidden(self):
directions = 2 if self.bidirectional else 1
var_hidden = torch.zeros(self.nlayers * directions, 1, self.hidden_size)
var_cell = torch.zeros(self.nlayers * directions, 1, self.hidden_size)
if next(self.lstm.parameters()).is_cuda:
var_hidden, var_cell = var_hidden.cuda(), var_cell.cuda()
return var_hidden, var_cell
def forward(self, doc_embeddings, doc_posteriors, statistics):
device = self.device
doc_embeddings = torch.as_tensor(doc_embeddings, dtype=torch.float, device=device)
doc_posteriors = torch.as_tensor(doc_posteriors, dtype=torch.float, device=device)
statistics = torch.as_tensor(statistics, dtype=torch.float, device=device)
if self.order_by is not None:
order = torch.argsort(doc_posteriors[:, self.order_by])
doc_embeddings = doc_embeddings[order]
doc_posteriors = doc_posteriors[order]
embeded_posteriors = torch.cat((doc_embeddings, doc_posteriors), dim=-1)
# the entire set represents only one instance in quapy contexts, and so the batch_size=1
# the shape should be (1, number-of-instances, embedding-size + 1)
embeded_posteriors = embeded_posteriors.unsqueeze(0)
_, (rnn_hidden,_) = self.lstm(embeded_posteriors, self.init_hidden())
rnn_hidden = rnn_hidden.view(self.nlayers, self.ndirections, -1, self.hidden_size)
quant_embedding = rnn_hidden[0].view(-1)
quant_embedding = torch.cat((quant_embedding, statistics))
abstracted = quant_embedding.unsqueeze(0)
for linear in self.ff_layers:
abstracted = self.dropout(relu(linear(abstracted)))
logits = self.output(abstracted).view(1, -1)
prevalence = torch.softmax(logits, -1)
return prevalence