QuaPy/KDEyAitchison/commons.py

56 lines
1.4 KiB
Python

import numpy as np
import pandas as pd
from quapy.method.aggregative import EMQ, KDEyML, PACC
from sklearn.linear_model import LogisticRegression
METHODS = ['PACC',
'EMQ',
'KDEy-ML',
'KDEy-MLA'
]
# common hyperparameterss
hyper_LR = {
'classifier__C': np.logspace(-3, 3, 7),
'classifier__class_weight': ['balanced', None]
}
hyper_kde = {
'bandwidth': np.linspace(0.001, 0.5, 100)
}
hyper_kde_aitchison = {
'bandwidth': np.linspace(0.01, 2, 100)
}
# instances a new quantifier based on a string name
def new_method(method, **lr_kwargs):
lr = LogisticRegression(**lr_kwargs)
if method == 'KDEy-ML':
param_grid = {**hyper_kde, **hyper_LR}
quantifier = KDEyML(lr, kernel='gaussian')
elif method == 'KDEy-MLA':
param_grid = {**hyper_kde_aitchison, **hyper_LR}
quantifier = KDEyML(lr, kernel='aitchison')
elif method == 'EMQ':
param_grid = hyper_LR
quantifier = EMQ(lr)
elif method == 'PACC':
param_grid = hyper_LR
quantifier = PACC(lr)
else:
raise NotImplementedError('unknown method', method)
return param_grid, quantifier
def show_results(result_path):
df = pd.read_csv(result_path+'.csv', sep='\t')
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pv = df.pivot_table(index='Dataset', columns="Method", values=["MAE", "MRAE"])
print(pv)