identification vs attribution, macro-f1 and micro-f1
This commit is contained in:
parent
14d5f6e531
commit
1387ef2c59
|
|
@ -0,0 +1,78 @@
|
|||
from sklearn.linear_model import LogisticRegression
|
||||
from data.dante_loader import load_texts
|
||||
from data.features import *
|
||||
from model import AuthorshipVerificator, f1_from_counters
|
||||
from sklearn.svm import LinearSVC, SVC
|
||||
from util.color_visualization import color
|
||||
|
||||
# DONE: ngrams should contain punctuation marks according to Sapkota et al. [39] in the PAN 2015 overview
|
||||
# (More recently, it was shown that character
|
||||
# n-grams corresponding to word affixes and including punctuation marks are the most
|
||||
# significant features in cross-topic authorship attribution [57].) #we have cancelled the
|
||||
# TODO: inspect the impact of chi-squared correlations against positive-only (or positive and negative) correlations for feature selection
|
||||
# TODO: sentence length (Mendenhall-style) ?
|
||||
|
||||
|
||||
for epistola in [2]:
|
||||
if epistola==1:
|
||||
authors = ['Dante','GiovanniBoccaccio','PierDellaVigna']
|
||||
else:
|
||||
authors = ['Dante', 'BenvenutoDaImola', 'FilippoVillani','GiovanniBoccaccio','GiovanniDelVirgilio',
|
||||
'GrazioloBambaglioli','GuidoDaPisa','PietroAlighieri','ZonoDeMagnalis']
|
||||
|
||||
discarded = 0
|
||||
f1_scores = []
|
||||
counters = []
|
||||
for i,author in enumerate(authors):
|
||||
print('='*80)
|
||||
print('Authorship Identification for {} (complete {}/{})'.format(author, i, len(authors)))
|
||||
print('Corpus of Epistola {}'.format(epistola))
|
||||
print('='*80)
|
||||
path = '../testi_{}'.format(epistola)
|
||||
if epistola==2:
|
||||
path+='_with_GuidoDaPisa'
|
||||
|
||||
positive, negative, ep_text = load_texts(path, positive_author=author, unknown_target='EpistolaXIII_{}.txt'.format(epistola))
|
||||
if len(positive) < 2:
|
||||
discarded+=1
|
||||
continue
|
||||
|
||||
n_full_docs = len(positive) + len(negative)
|
||||
|
||||
feature_extractor = FeatureExtractor(function_words_freq='latin',
|
||||
conjugations_freq='latin',
|
||||
features_Mendenhall=True,
|
||||
tfidf_feat_selection_ratio=0.1,
|
||||
wordngrams=False, n_wordngrams=(1, 2),
|
||||
charngrams=True, n_charngrams=(3, 4, 5), preserve_punctuation=False,
|
||||
split_documents=True, split_policy=split_by_sentences, window_size=3,
|
||||
normalize_features=True)
|
||||
|
||||
Xtr,ytr,groups = feature_extractor.fit_transform(positive, negative)
|
||||
print(ytr)
|
||||
|
||||
ep, ep_fragments = feature_extractor.transform(ep_text, return_fragments=True, window_size=3)
|
||||
|
||||
print('Fitting the Verificator')
|
||||
av = AuthorshipVerificator(nfolds=10, estimator=LogisticRegression)
|
||||
av.fit(Xtr,ytr,groups)
|
||||
|
||||
score_ave, score_std, tp, fp, fn, tn = av.leave_one_out(Xtr, ytr, groups, test_lowest_index_only=True, counters=True)
|
||||
# print('LOO[full-docs]={:.3f} +-{:.5f}'.format(score_ave, score_std))
|
||||
f1_scores.append(f1_from_counters(tp, fp, fn, tn))
|
||||
counters.append((tp, fp, fn, tn))
|
||||
print('F1 for {} = {:.3f}'.format(author,f1_scores[-1]))
|
||||
|
||||
|
||||
print('Computing macro- and micro-averages (discarded {}/{})'.format(discarded,len(authors)))
|
||||
f1_scores = np.array(f1_scores)
|
||||
counters = np.array(counters)
|
||||
|
||||
macro_f1 = f1_scores.mean()
|
||||
micro_f1 = f1_from_counters(*counters.sum(axis=0).tolist())
|
||||
|
||||
print('Macro-F1 = {:.3f}'.format(macro_f1))
|
||||
print('Micro-F1 = {:.3f}'.format(micro_f1))
|
||||
print()
|
||||
|
||||
|
||||
|
|
@ -1,7 +1,7 @@
|
|||
from sklearn.linear_model import LogisticRegression
|
||||
from data.dante_loader import load_texts
|
||||
from data.features import *
|
||||
from model import AuthorshipVerificator
|
||||
from model import AuthorshipVerificator, f1_from_counters
|
||||
from sklearn.svm import LinearSVC, SVC
|
||||
from util.color_visualization import color
|
||||
|
||||
|
|
@ -12,14 +12,16 @@ from util.color_visualization import color
|
|||
# TODO: inspect the impact of chi-squared correlations against positive-only (or positive and negative) correlations for feature selection
|
||||
# TODO: sentence length (Mendenhall-style) ?
|
||||
|
||||
|
||||
for epistola in [1, 2]:
|
||||
|
||||
print('Epistola {}'.format(epistola))
|
||||
print('='*80)
|
||||
path = '../testi_{}'.format(epistola)
|
||||
if epistola==2:
|
||||
path+='_with_GuidoDaPisa'
|
||||
|
||||
positive, negative, ep_text = load_texts(path, unknown_target='EpistolaXIII_{}.txt'.format(epistola))
|
||||
positive, negative, ep_text = load_texts(path, positive_author='Dante', unknown_target='EpistolaXIII_{}.txt'.format(epistola))
|
||||
n_full_docs = len(positive) + len(negative)
|
||||
|
||||
feature_extractor = FeatureExtractor(function_words_freq='latin',
|
||||
|
|
@ -27,7 +29,7 @@ for epistola in [1, 2]:
|
|||
features_Mendenhall=True,
|
||||
tfidf_feat_selection_ratio=0.1,
|
||||
wordngrams=False, n_wordngrams=(1, 2),
|
||||
charngrams=True, n_charngrams=(3, 4, 5), preserve_punctuation=False,
|
||||
charngrams=True, n_charngrams=(2, 3, 4), preserve_punctuation=False,
|
||||
split_documents=True, split_policy=split_by_sentences, window_size=3,
|
||||
normalize_features=True)
|
||||
|
||||
|
|
@ -46,12 +48,14 @@ for epistola in [1, 2]:
|
|||
fulldoc_prob, fragment_probs = av.predict_proba(ep, title)
|
||||
# color(path='../dante_color/epistola{}.html'.format(epistola), texts=ep_fragments, probabilities=fragment_probs, title=title)
|
||||
|
||||
score_ave, score_std = av.leave_one_out(Xtr, ytr, groups, test_lowest_index_only=False)
|
||||
print('LOO[full-and-fragments]={:.3f} +-{:.5f}'.format(score_ave, score_std))
|
||||
# score_ave, score_std = av.leave_one_out(Xtr, ytr, groups, test_lowest_index_only=False)
|
||||
# print('LOO[full-and-fragments]={:.3f} +-{:.5f}'.format(score_ave, score_std))
|
||||
|
||||
score_ave, score_std = av.leave_one_out(Xtr, ytr, groups, test_lowest_index_only=True)
|
||||
print('LOO[full-docs]={:.3f} +-{:.5f}'.format(score_ave, score_std))
|
||||
score_ave, score_std, tp, fp, fn, tn = av.leave_one_out(Xtr, ytr, groups, test_lowest_index_only=True, counters=True)
|
||||
# print('LOO[full-docs]={:.3f} +-{:.5f}'.format(score_ave, score_std))
|
||||
f1_ = f1_from_counters(tp, fp, fn, tn)
|
||||
print('F1 = {:.3f}'.format(f1_))
|
||||
|
||||
score_ave, score_std = av.leave_one_out(Xtr, ytr, None)
|
||||
print('LOO[w/o groups]={:.3f} +-{:.5f}'.format(score_ave, score_std))
|
||||
# score_ave, score_std = av.leave_one_out(Xtr, ytr, None)
|
||||
# print('LOO[w/o groups]={:.3f} +-{:.5f}'.format(score_ave, score_std))
|
||||
|
||||
Binary file not shown.
Binary file not shown.
|
|
@ -9,7 +9,6 @@ import collections
|
|||
from nltk.corpus import stopwords
|
||||
|
||||
|
||||
|
||||
latin_function_words = ['et', 'in', 'de', 'ad', 'non', 'vt', 'cvm', 'per', 'a', 'sed', 'qve', 'qvia', 'ex', 'sic',
|
||||
'si', 'etiam', 'idest', 'nam', 'vnde', 'ab', 'vel', 'sicvt', 'ita', 'enim', 'scilicet', 'nec',
|
||||
'pro', 'avtem', 'ibi', 'dvm', 'vero', 'tamen', 'inter', 'ideo', 'propter', 'contra', 'svb',
|
||||
|
|
@ -18,15 +17,6 @@ latin_function_words = ['et', 'in', 'de', 'ad', 'non', 'vt', 'cvm', 'per',
|
|||
'qvidem', 'svpra', 'ante', 'adhvc', 'sev' , 'apvd', 'olim', 'statim', 'satis', 'ob', 'qvoniam',
|
||||
'postea', 'nvnqvam']
|
||||
|
||||
def get_function_words(lang):
|
||||
if lang=='latin':
|
||||
return latin_function_words
|
||||
elif lang in ['english','spanish']:
|
||||
return stopwords.words(lang)
|
||||
else:
|
||||
raise ValueError('{} not in scope!'.format(lang))
|
||||
|
||||
|
||||
latin_conjugations = ['o', 'eo', 'io', 'as', 'es', 'is', 'at', 'et', 'it', 'amvs', 'emvs', 'imvs', 'atis', 'etis',
|
||||
'itis', 'ant', 'ent', 'vnt', 'ivnt', 'or', 'eor', 'ior', 'aris', 'eris', 'iris', 'atvr', 'etvr',
|
||||
'itvr', 'amvr', 'emvr', 'imvr', 'amini', 'emini', 'imini', 'antvr', 'entvr', 'vntvr', 'ivntvr',
|
||||
|
|
@ -55,11 +45,22 @@ spanish_conjugations = ['o','as','a','amos','áis','an','es','e','emos','éis','
|
|||
'aba', 'abas', 'ábamos', 'aban', 'ía', 'ías', 'íamos', 'íais', 'ían', 'ás','á',
|
||||
'án','estoy','estás','está','estamos','estáis','están']
|
||||
|
||||
|
||||
def get_function_words(lang):
|
||||
if lang=='latin':
|
||||
return latin_function_words
|
||||
elif lang in ['english','spanish']:
|
||||
return stopwords.words(lang)
|
||||
else:
|
||||
raise ValueError('{} not in scope!'.format(lang))
|
||||
|
||||
def get_conjugations(lang):
|
||||
if lang == 'latin':
|
||||
return latin_conjugations
|
||||
elif lang == 'spanish':
|
||||
return spanish_conjugations
|
||||
else:
|
||||
raise ValueError('conjugations for languages other than latin are not yet supported')
|
||||
raise ValueError('conjugations for languages other than Latin and Spanish are not yet supported')
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------
|
||||
|
|
@ -411,7 +412,7 @@ class FeatureExtractor:
|
|||
'load_documents: function_words_freq={} features_Mendenhall={} tfidf={}, split_documents={}, split_policy={}'
|
||||
.format(self.function_words_freq, self.features_Mendenhall, self.tfidf, self.split_documents,
|
||||
self.split_policy.__name__))
|
||||
print('Epistola 1 shape:', TEST.shape)
|
||||
print('test shape:', TEST.shape)
|
||||
print()
|
||||
|
||||
if return_fragments:
|
||||
|
|
|
|||
29
src/model.py
29
src/model.py
|
|
@ -14,23 +14,31 @@ class RandomVerificator:
|
|||
def predict(self,test):
|
||||
return np.random.rand()
|
||||
|
||||
def f1(true_labels, predicted_labels):
|
||||
assert len(true_labels)==len(predicted_labels), "Format not consistent between true and predicted labels."
|
||||
def get_counters(true_labels, predicted_labels):
|
||||
assert len(true_labels) == len(predicted_labels), "Format not consistent between true and predicted labels."
|
||||
nd = len(true_labels)
|
||||
tp = np.sum(predicted_labels[true_labels==1])
|
||||
tp = np.sum(predicted_labels[true_labels == 1])
|
||||
fp = np.sum(predicted_labels[true_labels == 0])
|
||||
fn = np.sum(true_labels[predicted_labels == 0])
|
||||
tn = nd - (tp+fp+fn)
|
||||
return tp,fp,fn,tn
|
||||
|
||||
def f1_from_counters(tp,fp,fn,tn):
|
||||
num = 2.0 * tp
|
||||
den = 2.0 * tp + fp + fn
|
||||
if den > 0: return num / den
|
||||
# we define f1 to be 1 if den==0 since the classifier has correctly classified all instances as negative
|
||||
return 1.0
|
||||
|
||||
def f1(true_labels, predicted_labels):
|
||||
tp, fp, fn, tn = get_counters(true_labels,predicted_labels)
|
||||
return f1_from_counters(tp, fp, fn, tn )
|
||||
|
||||
|
||||
class AuthorshipVerificator:
|
||||
|
||||
def __init__(self, nfolds=10,
|
||||
params = {'C': [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000], 'class_weight':['balanced']},
|
||||
params = {'C': np.logspace(-4,+4,9), 'class_weight':['balanced',None]},
|
||||
estimator=SVC):
|
||||
self.nfolds = nfolds
|
||||
self.params = params
|
||||
|
|
@ -70,7 +78,7 @@ class AuthorshipVerificator:
|
|||
|
||||
return self
|
||||
|
||||
def leave_one_out(self, X, y, groups=None, test_lowest_index_only=True):
|
||||
def leave_one_out(self, X, y, groups=None, test_lowest_index_only=True, counters=False):
|
||||
|
||||
if groups is None:
|
||||
print('Computing LOO without groups')
|
||||
|
|
@ -85,8 +93,15 @@ class AuthorshipVerificator:
|
|||
|
||||
scores = cross_val_score(self.estimator, X, y, cv=folds, scoring=make_scorer(f1), n_jobs=-1)
|
||||
print(scores)
|
||||
|
||||
return scores.mean(), scores.std()
|
||||
if counters and test_lowest_index_only:
|
||||
yfull_true = y[:len(folds)]
|
||||
yfull_predict = np.zeros_like(yfull_true)
|
||||
yfull_predict[scores == 1] = yfull_true[scores == 1]
|
||||
yfull_predict[scores != 1] = 1-yfull_true[scores != 1]
|
||||
tp, fp, fn, tn = get_counters(yfull_true, yfull_predict)
|
||||
return scores.mean(), scores.std(), tp, fp, fn, tn
|
||||
else:
|
||||
return scores.mean(), scores.std()
|
||||
|
||||
def predict(self, test, epistola_name=''):
|
||||
pred = self.estimator.predict(test)
|
||||
|
|
|
|||
|
|
@ -32,6 +32,7 @@ def evaluation(y_pred, y_prob, y_true):
|
|||
def doall(problem,pos,neg,test,truth):
|
||||
print('[Start]{}'.format(problem))
|
||||
feature_extractor = FeatureExtractor(function_words_freq=lang,
|
||||
conjugations_freq=lang,
|
||||
features_Mendenhall=True,
|
||||
wordngrams=False, tfidf_feat_selection_ratio=0.1,
|
||||
charngrams=True, n_charngrams=[3, 4, 5],
|
||||
|
|
|
|||
Loading…
Reference in New Issue