improving experimental protocol
This commit is contained in:
parent
121ecadfcb
commit
4c6c92f6d4
|
|
@ -1,10 +1,8 @@
|
|||
import util._hide_sklearn_warnings
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from data.dante_loader import load_latin_corpus, list_authors
|
||||
from data.features import *
|
||||
from model import AuthorshipVerificator
|
||||
from util.evaluation import f1_from_counters
|
||||
from sklearn.calibration import CalibratedClassifierCV
|
||||
import argparse
|
||||
|
||||
AUTHORS_CORPUS_I = ['Dante', 'ClaraAssisiensis', 'GiovanniBoccaccio', 'GuidoFaba', 'PierDellaVigna']
|
||||
|
|
@ -15,6 +13,8 @@ AUTHORS_CORPUS_II = ['Dante', 'BeneFlorentinus', 'BenvenutoDaImola', 'Boncompagn
|
|||
'RyccardusDeSanctoGermano', 'ZonoDeMagnalis']
|
||||
|
||||
|
||||
DEBUG_MODE=True
|
||||
|
||||
def main():
|
||||
log = open(args.log, 'wt')
|
||||
discarded = 0
|
||||
|
|
@ -44,7 +44,7 @@ def main():
|
|||
conjugations_freq='latin',
|
||||
features_Mendenhall=True,
|
||||
features_sentenceLengths=True,
|
||||
feature_selection_ratio=0.1,
|
||||
feature_selection_ratio=0.1 if DEBUG_MODE else 1,
|
||||
wordngrams=True, n_wordngrams=(1, 2),
|
||||
charngrams=True, n_charngrams=(3, 4, 5),
|
||||
preserve_punctuation=False,
|
||||
|
|
@ -58,22 +58,23 @@ def main():
|
|||
|
||||
print('Fitting the Verificator')
|
||||
if args.C is None:
|
||||
params = {'C': np.logspace(-3, +3, 7)}
|
||||
params = {'C': np.logspace(0, 1, 2)} if DEBUG_MODE else {'C': np.logspace(-3, +3, 7)}
|
||||
C = 1.
|
||||
else:
|
||||
params = None
|
||||
C = args.C
|
||||
|
||||
av = AuthorshipVerificator(C=C, params=params)
|
||||
av.fit(Xtr, ytr)
|
||||
|
||||
if args.unknown:
|
||||
av = AuthorshipVerificator(C=C, param_grid=params)
|
||||
av.fit(Xtr, ytr)
|
||||
|
||||
print(f'Checking for the hypothesis that {author} was the author of {args.unknown}')
|
||||
ep, ep_fragments = feature_extractor.transform(ep_text, return_fragments=True, window_size=3)
|
||||
pred, _ = av.predict_proba(ep)
|
||||
pred, _ = av.predict_proba_with_fragments(ep)
|
||||
tee(f'{args.unknown}: Posterior probability for {author} is {pred:.3f}', log)
|
||||
|
||||
if args.loo:
|
||||
av = AuthorshipVerificator(C=C, param_grid=params)
|
||||
print('Validating the Verificator (Leave-One-Out)')
|
||||
score_ave, score_std, tp, fp, fn, tn = av.leave_one_out(
|
||||
Xtr, ytr, files, groups, test_lowest_index_only=True, counters=True
|
||||
|
|
@ -97,6 +98,9 @@ def main():
|
|||
|
||||
log.close()
|
||||
|
||||
if DEBUG_MODE:
|
||||
print('DEBUG_MODE ON')
|
||||
|
||||
|
||||
def tee(msg, log):
|
||||
print(msg)
|
||||
|
|
@ -139,3 +143,4 @@ if __name__ == '__main__':
|
|||
assert args.unknown is None or os.path.exists(args.unknown), '"unknown file" does not exist'
|
||||
|
||||
main()
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,134 @@
|
|||
#import util._hide_sklearn_warnings
|
||||
from data.dante_loader import load_latin_corpus, list_authors
|
||||
from data.features import *
|
||||
from model import AuthorshipVerificator, RangeFeatureSelector, leave_one_out
|
||||
from util.evaluation import f1_from_counters
|
||||
import argparse
|
||||
from sklearn.pipeline import Pipeline
|
||||
|
||||
AUTHORS_CORPUS_I = ['Dante', 'ClaraAssisiensis', 'GiovanniBoccaccio', 'GuidoFaba', 'PierDellaVigna']
|
||||
AUTHORS_CORPUS_II = ['Dante', 'BeneFlorentinus', 'BenvenutoDaImola', 'BoncompagnoDaSigna', 'ClaraAssisiensis',
|
||||
'FilippoVillani', 'GiovanniBoccaccio', 'GiovanniDelVirgilio', 'GrazioloBambaglioli', 'GuidoDaPisa',
|
||||
'GuidoDeColumnis', 'GuidoFaba', 'IacobusDeVaragine', 'IohannesDeAppia', 'IohannesDePlanoCarpini',
|
||||
'IulianusDeSpira', 'NicolaTrevet', 'PierDellaVigna', 'PietroAlighieri', 'RaimundusLullus',
|
||||
'RyccardusDeSanctoGermano', 'ZonoDeMagnalis']
|
||||
|
||||
|
||||
DEBUG_MODE = False
|
||||
|
||||
|
||||
def main():
|
||||
log = open(args.log, 'wt')
|
||||
discarded = 0
|
||||
f1_scores = []
|
||||
counters = []
|
||||
for i, author in enumerate(args.authors):
|
||||
path = args.corpuspath
|
||||
print('='*80)
|
||||
print(f'Authorship Identification for {author} (complete {i}/{len(args.authors)})')
|
||||
print(f'Corpus {path}')
|
||||
print('-'*80)
|
||||
|
||||
positive, negative, pos_files, neg_files, ep_text = load_latin_corpus(path, positive_author=author)
|
||||
files = np.asarray(pos_files + neg_files)
|
||||
if len(positive) < 2:
|
||||
discarded += 1
|
||||
print(f'discarding analysis for {author} which has only {len(positive)} documents')
|
||||
continue
|
||||
|
||||
n_full_docs = len(positive) + len(negative)
|
||||
print(f'read {n_full_docs} documents from {path}')
|
||||
|
||||
feature_extractor = FeatureExtractor(
|
||||
function_words_freq='latin',
|
||||
conjugations_freq='latin',
|
||||
features_Mendenhall=True,
|
||||
features_sentenceLengths=True,
|
||||
feature_selection_ratio=0.05 if DEBUG_MODE else 1,
|
||||
wordngrams=True, n_wordngrams=(1, 2),
|
||||
charngrams=True, n_charngrams=(3, 4, 5),
|
||||
preserve_punctuation=False,
|
||||
split_documents=True,
|
||||
split_policy=split_by_sentences,
|
||||
window_size=3,
|
||||
normalize_features=True
|
||||
)
|
||||
|
||||
Xtr, ytr, groups = feature_extractor.fit_transform(positive, negative)
|
||||
|
||||
print('Fitting the Verificator')
|
||||
params = {'C': np.logspace(0, 1, 2)} if DEBUG_MODE else {'C': np.logspace(-3, +3, 7)}
|
||||
|
||||
slice_charngrams = feature_extractor.feature_range['_cngrams_task']
|
||||
slice_wordngrams = feature_extractor.feature_range['_wngrams_task']
|
||||
if slice_charngrams.start < slice_wordngrams.start:
|
||||
slice_first, slice_second = slice_charngrams, slice_wordngrams
|
||||
else:
|
||||
slice_first, slice_second = slice_wordngrams, slice_charngrams
|
||||
av = Pipeline([
|
||||
('featsel_cngrams', RangeFeatureSelector(slice_second, 0.1)),
|
||||
('featsel_wngrams', RangeFeatureSelector(slice_first, 0.1)),
|
||||
('av', AuthorshipVerificator(C=1, param_grid=params))
|
||||
])
|
||||
|
||||
print('Validating the Verificator (Leave-One-Out)')
|
||||
score_ave, score_std, tp, fp, fn, tn = leave_one_out(
|
||||
av, Xtr, ytr, files, groups, test_lowest_index_only=True, counters=True
|
||||
)
|
||||
f1_scores.append(f1_from_counters(tp, fp, fn, tn))
|
||||
counters.append((tp, fp, fn, tn))
|
||||
tee(f'F1 for {author} = {f1_scores[-1]:.3f}', log)
|
||||
print(f'TP={tp} FP={fp} FN={fn} TN={tn}')
|
||||
|
||||
print(f'Computing macro- and micro-averages (discarded {discarded}/{len(args.authors)})')
|
||||
f1_scores = np.array(f1_scores)
|
||||
counters = np.array(counters)
|
||||
|
||||
macro_f1 = f1_scores.mean()
|
||||
micro_f1 = f1_from_counters(*counters.sum(axis=0).tolist())
|
||||
|
||||
tee(f'LOO Macro-F1 = {macro_f1:.3f}', log)
|
||||
tee(f'LOO Micro-F1 = {micro_f1:.3f}', log)
|
||||
print()
|
||||
|
||||
log.close()
|
||||
|
||||
if DEBUG_MODE:
|
||||
print('DEBUG_MODE ON')
|
||||
|
||||
|
||||
def tee(msg, log):
|
||||
print(msg)
|
||||
log.write(f'{msg}\n')
|
||||
log.flush()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import os
|
||||
|
||||
# Training settings
|
||||
parser = argparse.ArgumentParser(description='Authorship verification for MedLatin '
|
||||
'submit each binary classifier to leave-one-out validation')
|
||||
parser.add_argument('corpuspath', type=str, metavar='CORPUSPATH',
|
||||
help=f'Path to the directory containing the corpus (documents must be named '
|
||||
f'<author>_<texname>.txt)')
|
||||
parser.add_argument('positive', type=str, default="Dante", metavar='AUTHOR',
|
||||
help= f'Positive author for the hypothesis (default "Dante"); set to "ALL" to check '
|
||||
f'every author')
|
||||
parser.add_argument('--log', type=str, metavar='PATH', default='./results.txt',
|
||||
help='path to the log file where to write the results (default ./results.txt)')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.positive == 'ALL':
|
||||
args.authors = list_authors(args.corpuspath, skip_prefix='Epistola')
|
||||
else:
|
||||
if (args.positive not in AUTHORS_CORPUS_I) and (args.positive in AUTHORS_CORPUS_II):
|
||||
print(f'warning: author {args.positive} is not in the known list of authors for CORPUS I nor CORPUS II')
|
||||
assert args.positive in list_authors(args.corpuspath, skip_prefix='Epistola'), 'unexpected author'
|
||||
args.authors = [args.positive]
|
||||
|
||||
assert os.path.exists(args.corpuspath), f'corpus path {args.corpuspath} does not exist'
|
||||
|
||||
main()
|
||||
|
||||
|
|
@ -0,0 +1,146 @@
|
|||
import util._hide_sklearn_warnings
|
||||
from data.dante_loader import load_latin_corpus, list_authors
|
||||
from data.features import *
|
||||
from model import AuthorshipVerificator
|
||||
from util.evaluation import f1_from_counters
|
||||
import argparse
|
||||
|
||||
AUTHORS_CORPUS_I = ['Dante', 'ClaraAssisiensis', 'GiovanniBoccaccio', 'GuidoFaba', 'PierDellaVigna']
|
||||
AUTHORS_CORPUS_II = ['Dante', 'BeneFlorentinus', 'BenvenutoDaImola', 'BoncompagnoDaSigna', 'ClaraAssisiensis',
|
||||
'FilippoVillani', 'GiovanniBoccaccio', 'GiovanniDelVirgilio', 'GrazioloBambaglioli', 'GuidoDaPisa',
|
||||
'GuidoDeColumnis', 'GuidoFaba', 'IacobusDeVaragine', 'IohannesDeAppia', 'IohannesDePlanoCarpini',
|
||||
'IulianusDeSpira', 'NicolaTrevet', 'PierDellaVigna', 'PietroAlighieri', 'RaimundusLullus',
|
||||
'RyccardusDeSanctoGermano', 'ZonoDeMagnalis']
|
||||
|
||||
|
||||
DEBUG_MODE=True
|
||||
|
||||
def main():
|
||||
log = open(args.log, 'wt')
|
||||
discarded = 0
|
||||
f1_scores = []
|
||||
counters = []
|
||||
for i, author in enumerate(args.authors):
|
||||
path = args.corpuspath
|
||||
print('='*80)
|
||||
print(f'Authorship Identification for {author} (complete {i}/{len(args.authors)})')
|
||||
print(f'Corpus {path}')
|
||||
print('-'*80)
|
||||
|
||||
positive, negative, pos_files, neg_files, ep_text = load_latin_corpus(
|
||||
path, positive_author=author, unknown_target=args.unknown
|
||||
)
|
||||
files = np.asarray(pos_files + neg_files)
|
||||
if len(positive) < 2:
|
||||
discarded += 1
|
||||
print(f'discarding analysis for {author} which has only {len(positive)} documents')
|
||||
continue
|
||||
|
||||
n_full_docs = len(positive) + len(negative)
|
||||
print(f'read {n_full_docs} documents from {path}')
|
||||
|
||||
feature_extractor = FeatureExtractor(
|
||||
function_words_freq='latin',
|
||||
conjugations_freq='latin',
|
||||
features_Mendenhall=True,
|
||||
features_sentenceLengths=True,
|
||||
feature_selection_ratio=0.1 if DEBUG_MODE else 1,
|
||||
wordngrams=True, n_wordngrams=(1, 2),
|
||||
charngrams=True, n_charngrams=(3, 4, 5),
|
||||
preserve_punctuation=False,
|
||||
split_documents=True,
|
||||
split_policy=split_by_sentences,
|
||||
window_size=3,
|
||||
normalize_features=True
|
||||
)
|
||||
|
||||
Xtr, ytr, groups = feature_extractor.fit_transform(positive, negative)
|
||||
|
||||
print('Fitting the Verificator')
|
||||
if args.C is None:
|
||||
params = {'C': np.logspace(0, 1, 2)} if DEBUG_MODE else {'C': np.logspace(-3, +3, 7)}
|
||||
C = 1.
|
||||
else:
|
||||
params = None
|
||||
C = args.C
|
||||
|
||||
if args.unknown:
|
||||
av = AuthorshipVerificator(C=C, param_grid=params)
|
||||
av.fit(Xtr, ytr)
|
||||
|
||||
print(f'Checking for the hypothesis that {author} was the author of {args.unknown}')
|
||||
ep, ep_fragments = feature_extractor.transform(ep_text, return_fragments=True, window_size=3)
|
||||
pred, _ = av.predict_proba_with_fragments(ep)
|
||||
tee(f'{args.unknown}: Posterior probability for {author} is {pred:.3f}', log)
|
||||
|
||||
if args.loo:
|
||||
av = AuthorshipVerificator(C=C, param_grid=params)
|
||||
print('Validating the Verificator (Leave-One-Out)')
|
||||
score_ave, score_std, tp, fp, fn, tn = av.leave_one_out(
|
||||
Xtr, ytr, files, groups, test_lowest_index_only=True, counters=True
|
||||
)
|
||||
f1_scores.append(f1_from_counters(tp, fp, fn, tn))
|
||||
counters.append((tp, fp, fn, tn))
|
||||
tee(f'F1 for {author} = {f1_scores[-1]:.3f}', log)
|
||||
print(f'TP={tp} FP={fp} FN={fn} TN={tn}')
|
||||
|
||||
if args.loo:
|
||||
print(f'Computing macro- and micro-averages (discarded {discarded}/{len(args.authors)})')
|
||||
f1_scores = np.array(f1_scores)
|
||||
counters = np.array(counters)
|
||||
|
||||
macro_f1 = f1_scores.mean()
|
||||
micro_f1 = f1_from_counters(*counters.sum(axis=0).tolist())
|
||||
|
||||
tee(f'LOO Macro-F1 = {macro_f1:.3f}', log)
|
||||
tee(f'LOO Micro-F1 = {micro_f1:.3f}', log)
|
||||
print()
|
||||
|
||||
log.close()
|
||||
|
||||
if DEBUG_MODE:
|
||||
print('DEBUG_MODE ON')
|
||||
|
||||
|
||||
def tee(msg, log):
|
||||
print(msg)
|
||||
log.write(f'{msg}\n')
|
||||
log.flush()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import os
|
||||
|
||||
# Training settings
|
||||
parser = argparse.ArgumentParser(description='Authorship verification for Epistola XIII')
|
||||
parser.add_argument('corpuspath', type=str, metavar='CORPUSPATH',
|
||||
help=f'Path to the directory containing the corpus (documents must be named '
|
||||
f'<author>_<texname>.txt)')
|
||||
parser.add_argument('positive', type=str, default="Dante", metavar='AUTHOR',
|
||||
help= f'Positive author for the hypothesis (default "Dante"); set to "ALL" to check '
|
||||
f'every author')
|
||||
parser.add_argument('--loo', default=False, action='store_true',
|
||||
help='submit each binary classifier to leave-one-out validation')
|
||||
parser.add_argument('--unknown', type=str, metavar='PATH', default=None,
|
||||
help='path to the file of unknown paternity (default None)')
|
||||
parser.add_argument('--log', type=str, metavar='PATH', default='./results.txt',
|
||||
help='path to the log file where to write the results (default ./results.txt)')
|
||||
parser.add_argument('--C', type=float, metavar='C', default=None,
|
||||
help='set the parameter C (trade off between error and margin) or leave as None to optimize')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.positive == 'ALL':
|
||||
args.authors = list_authors(args.corpuspath, skip_prefix='Epistola')
|
||||
else:
|
||||
if (args.positive not in AUTHORS_CORPUS_I) and (args.positive in AUTHORS_CORPUS_II):
|
||||
print(f'warning: author {args.positive} is not in the known list of authors for CORPUS I nor CORPUS II')
|
||||
assert args.positive in list_authors(args.corpuspath, skip_prefix='Epistola'), 'unexpected author'
|
||||
args.authors = [args.positive]
|
||||
|
||||
assert args.unknown or args.loo, 'error: nor an unknown document, nor LOO have been requested. Nothing to do.'
|
||||
assert os.path.exists(args.corpuspath), f'corpus path {args.corpuspath} does not exist'
|
||||
assert args.unknown is None or os.path.exists(args.unknown), '"unknown file" does not exist'
|
||||
|
||||
main()
|
||||
|
||||
|
|
@ -367,6 +367,7 @@ class FeatureExtractor:
|
|||
self.feature_names = None
|
||||
self.wngrams_vectorizer = self.wngrams_selector = None
|
||||
self.cngrams_vectorizer = self.cngrams_selector = None
|
||||
self.feature_range = {}
|
||||
|
||||
def fit_transform(self, positives, negatives):
|
||||
documents = positives + negatives
|
||||
|
|
@ -423,11 +424,15 @@ class FeatureExtractor:
|
|||
else:
|
||||
return TEST
|
||||
|
||||
def _addfeatures(self, X, F, feat_names=None):
|
||||
def _addfeatures(self, X, F, feat_set_name, feat_names=None):
|
||||
if self.normalize_features:
|
||||
normalize(F, axis=1, copy=False)
|
||||
self._register_feature_names(feat_names)
|
||||
|
||||
last_col, n_cols = X.shape[1], F.shape[1]
|
||||
self.feature_range[feat_set_name] = slice(last_col, last_col+n_cols)
|
||||
print('adding feat-set slice ', feat_set_name, self.feature_range[feat_set_name])
|
||||
|
||||
if issparse(F):
|
||||
return hstack((X, F)) # sparse
|
||||
else:
|
||||
|
|
@ -445,6 +450,16 @@ class FeatureExtractor:
|
|||
self.feature_names = []
|
||||
self.feature_names.extend(feat_names)
|
||||
|
||||
def get_feature_set(self, X, name):
|
||||
assert name in self.feature_range, 'unknown feature set name'
|
||||
return X[:,self.feature_range[name]]
|
||||
|
||||
def get_feature_set_names(self):
|
||||
return list(self.feature_range.keys())
|
||||
|
||||
def get_feature_names(self):
|
||||
return self.feature_names
|
||||
|
||||
def _transform_parallel(self, documents, y=None, fit=False, n_jobs=-1):
|
||||
# initialize the document-by-feature vector
|
||||
X = np.empty((len(documents), 0))
|
||||
|
|
@ -501,9 +516,9 @@ class FeatureExtractor:
|
|||
for out in outs:
|
||||
taskname = out['task']
|
||||
if taskname not in {'_wngrams_task', '_cngrams_task'}:
|
||||
X = self._addfeatures(X, out['features'], out['f_names'] if fit else None)
|
||||
X = self._addfeatures(X, out['features'], taskname, out['f_names'] if fit else None)
|
||||
else:
|
||||
X = self._addfeatures(_tocsr(X), out['features'], out['f_names'] if fit else None)
|
||||
X = self._addfeatures(_tocsr(X), out['features'], taskname, out['f_names'] if fit else None)
|
||||
if fit:
|
||||
vectorizer, selector = out['vectorizer'], out['selector']
|
||||
if taskname == '_wngrams_task' and self.wngrams_vectorizer is None:
|
||||
|
|
|
|||
113
src/model.py
113
src/model.py
|
|
@ -1,30 +1,32 @@
|
|||
from sklearn.base import BaseEstimator, TransformerMixin
|
||||
from sklearn.metrics import make_scorer
|
||||
from sklearn.model_selection import GridSearchCV, LeaveOneOut, LeaveOneGroupOut, cross_val_score, StratifiedKFold
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from data.features import *
|
||||
from util.calibration import CalibratedClassifierCV
|
||||
from util.evaluation import f1, get_counters
|
||||
|
||||
|
||||
class AuthorshipVerificator:
|
||||
class AuthorshipVerificator(BaseEstimator):
|
||||
|
||||
def __init__(self, nfolds=10,
|
||||
params={'C': np.logspace(-4, +3, 8)},
|
||||
def __init__(self,
|
||||
nfolds=10,
|
||||
param_grid={'C': np.logspace(-4, +3, 8)},
|
||||
C=1.,
|
||||
author_name=None):
|
||||
self.nfolds = nfolds
|
||||
self.params = params
|
||||
self.author_name = author_name if author_name else 'this author'
|
||||
self.classifier = LogisticRegression(C=C, class_weight='balanced')
|
||||
self.param_grid = param_grid
|
||||
self.C = C
|
||||
self.author_name = author_name
|
||||
|
||||
def fit(self, X, y):
|
||||
self.classifier = LogisticRegression(C=self.C, class_weight='balanced')
|
||||
y = np.asarray(y)
|
||||
positive_examples = y.sum()
|
||||
if positive_examples >= self.nfolds and self.params is not None:
|
||||
if positive_examples >= self.nfolds and self.param_grid is not None:
|
||||
print('optimizing {}'.format(self.classifier.__class__.__name__))
|
||||
folds = list(StratifiedKFold(n_splits=self.nfolds, shuffle=True, random_state=42).split(X, y))
|
||||
self.estimator = GridSearchCV(
|
||||
self.classifier, param_grid=self.params, cv=folds, scoring=make_scorer(f1), n_jobs=-1
|
||||
self.classifier, param_grid=self.param_grid, cv=folds, scoring=make_scorer(f1), n_jobs=-1
|
||||
)
|
||||
else:
|
||||
self.estimator = self.classifier
|
||||
|
|
@ -36,44 +38,9 @@ class AuthorshipVerificator:
|
|||
print(f'Best params: {self.estimator.best_params_} (cross-validation F1={f1_mean:.3f})')
|
||||
self.estimator = self.estimator.best_estimator_
|
||||
|
||||
#self.estimator = CalibratedClassifierCV(base_estimator=self.estimator, cv=self.nfolds, ensemble=False)
|
||||
#self.estimator.fit(X, y)
|
||||
|
||||
return self
|
||||
|
||||
def leave_one_out(self, X, y, files, groups=None, test_lowest_index_only=True, counters=False):
|
||||
if groups is None:
|
||||
print('Computing LOO without groups')
|
||||
folds = list(LeaveOneOut().split(X, y))
|
||||
else:
|
||||
print('Computing LOO with groups')
|
||||
logo = LeaveOneGroupOut()
|
||||
folds = list(logo.split(X, y, groups))
|
||||
if test_lowest_index_only:
|
||||
print('ignoring fragments')
|
||||
folds = [(train, np.min(test, keepdims=True)) for train, test in folds]
|
||||
|
||||
scores = cross_val_score(self.estimator, X, y, cv=folds, scoring=make_scorer(f1), n_jobs=-1)
|
||||
missclassified = files[scores == 0].tolist()
|
||||
#if hasattr(self.estimator, 'predict_proba') and len(missclassified) > 0:
|
||||
# missclassified_prob = self.estimator.predict_proba(csr_matrix(X)[scores == 0])[:, 1]
|
||||
# missclassified_prob = missclassified_prob.flatten().tolist()
|
||||
# missclassified = [f'{file} Pr={prob:.3f}' for file, prob in zip(missclassified,missclassified_prob)]
|
||||
print('missclassified texts:')
|
||||
print('\n'.join(missclassified))
|
||||
|
||||
|
||||
if counters and test_lowest_index_only:
|
||||
yfull_true = y[:len(folds)]
|
||||
yfull_predict = np.zeros_like(yfull_true)
|
||||
yfull_predict[scores == 1] = yfull_true[scores == 1]
|
||||
yfull_predict[scores != 1] = 1-yfull_true[scores != 1]
|
||||
tp, fp, fn, tn = get_counters(yfull_true, yfull_predict)
|
||||
return scores.mean(), scores.std(), tp, fp, fn, tn
|
||||
else:
|
||||
return scores.mean(), scores.std()
|
||||
|
||||
def predict(self, test):
|
||||
def predict_with_fragments(self, test):
|
||||
pred = self.estimator.predict(test)
|
||||
full_doc_prediction = pred[0]
|
||||
if len(pred) > 1:
|
||||
|
|
@ -82,7 +49,10 @@ class AuthorshipVerificator:
|
|||
return full_doc_prediction, fragment_predictions
|
||||
return full_doc_prediction
|
||||
|
||||
def predict_proba(self, test):
|
||||
def predict(self, test):
|
||||
return self.estimator.predict(test)
|
||||
|
||||
def predict_proba_with_fragments(self, test):
|
||||
assert hasattr(self, 'predict_proba'), 'the classifier is not calibrated'
|
||||
pred = self.estimator.predict_proba(test)
|
||||
full_doc_prediction = pred[0,1]
|
||||
|
|
@ -92,5 +62,56 @@ class AuthorshipVerificator:
|
|||
return full_doc_prediction, fragment_predictions
|
||||
return full_doc_prediction, []
|
||||
|
||||
def predict_proba(self, test):
|
||||
assert hasattr(self, 'predict_proba'), 'the classifier is not calibrated'
|
||||
return self.estimator.predict_proba(test)
|
||||
|
||||
|
||||
def leave_one_out(model, X, y, files, groups=None, test_lowest_index_only=True, counters=False):
|
||||
if groups is None:
|
||||
print(f'Computing LOO without groups over {X.shape[0]} documents')
|
||||
folds = list(LeaveOneOut().split(X, y))
|
||||
else:
|
||||
print(f'Computing LOO with groups over {X.shape[0]} documents')
|
||||
logo = LeaveOneGroupOut()
|
||||
folds = list(logo.split(X, y, groups))
|
||||
if test_lowest_index_only:
|
||||
print('ignoring fragments')
|
||||
folds = [(train, np.min(test, keepdims=True)) for train, test in folds]
|
||||
|
||||
print(f'optimizing via grid search each o the {len(folds)} prediction problems')
|
||||
scores = cross_val_score(model, X, y, cv=folds, scoring=make_scorer(f1), n_jobs=-1, verbose=10)
|
||||
missclassified = files[scores == 0].tolist()
|
||||
#if hasattr(self.estimator, 'predict_proba') and len(missclassified) > 0:
|
||||
# missclassified_prob = self.estimator.predict_proba(csr_matrix(X)[scores == 0])[:, 1]
|
||||
# missclassified_prob = missclassified_prob.flatten().tolist()
|
||||
# missclassified = [f'{file} Pr={prob:.3f}' for file, prob in zip(missclassified,missclassified_prob)]
|
||||
print('missclassified texts:')
|
||||
print('\n'.join(missclassified))
|
||||
|
||||
if counters and test_lowest_index_only:
|
||||
yfull_true = y[:len(folds)]
|
||||
yfull_predict = np.zeros_like(yfull_true)
|
||||
yfull_predict[scores == 1] = yfull_true[scores == 1]
|
||||
yfull_predict[scores != 1] = 1-yfull_true[scores != 1]
|
||||
tp, fp, fn, tn = get_counters(yfull_true, yfull_predict)
|
||||
return scores.mean(), scores.std(), tp, fp, fn, tn
|
||||
else:
|
||||
return scores.mean(), scores.std()
|
||||
|
||||
|
||||
class RangeFeatureSelector(BaseEstimator, TransformerMixin):
|
||||
def __init__(self, range: slice, feat_sel_ratio: float):
|
||||
self.range = range
|
||||
self.feat_sel_ratio = feat_sel_ratio
|
||||
|
||||
def fit(self, X, y):
|
||||
nF = self.range.stop-self.range.start
|
||||
num_feats = int(self.feat_sel_ratio * nF)
|
||||
self.selector = SelectKBest(chi2, k=num_feats)
|
||||
self.selector.fit(X[:,self.range], y)
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
Z = self.selector.transform(X[:,self.range])
|
||||
return csr_matrix(hstack([X[:,:self.range.start], Z, X[:,self.range.stop:]]))
|
||||
|
|
|
|||
Loading…
Reference in New Issue