From 8d45db86b9e87ae9019e76199fb8f61eab670cfa Mon Sep 17 00:00:00 2001 From: Alejandro Moreo Date: Tue, 16 Jun 2020 13:48:15 +0200 Subject: [PATCH] calibration not improves --- src/author_identification.py | 2 +- src/experiments.sh | 0 src/model.py | 4 ++-- src/util/calibration.py | 4 ++-- 4 files changed, 5 insertions(+), 5 deletions(-) mode change 100644 => 100755 src/experiments.sh diff --git a/src/author_identification.py b/src/author_identification.py index 8130931..4369dc6 100755 --- a/src/author_identification.py +++ b/src/author_identification.py @@ -57,7 +57,7 @@ def main(): print('Fitting the Verificator') if args.C is None: - params = {'C': np.logspace(-4, +3, 8)} + params = {'C': np.logspace(-3, +3, 7)} C = 1. else: params = None diff --git a/src/experiments.sh b/src/experiments.sh old mode 100644 new mode 100755 diff --git a/src/model.py b/src/model.py index 11bcc77..0fc17e4 100755 --- a/src/model.py +++ b/src/model.py @@ -36,8 +36,8 @@ class AuthorshipVerificator: print(f'Best params: {self.estimator.best_params_} (cross-validation F1={f1_mean:.3f})') self.estimator = self.estimator.best_estimator_ - self.estimator = CalibratedClassifierCV(base_estimator=self.estimator, cv=self.nfolds, ensemble=False) - self.estimator.fit(X, y) + #self.estimator = CalibratedClassifierCV(base_estimator=self.estimator, cv=self.nfolds, ensemble=False) + #self.estimator.fit(X, y) return self diff --git a/src/util/calibration.py b/src/util/calibration.py index eb329a1..49661f4 100644 --- a/src/util/calibration.py +++ b/src/util/calibration.py @@ -23,7 +23,7 @@ from sklearn.base import (BaseEstimator, ClassifierMixin, RegressorMixin, clone, from sklearn.preprocessing import label_binarize, LabelBinarizer from sklearn.utils import check_array, indexable, column_or_1d from sklearn.utils.validation import check_is_fitted, check_consistent_length -from sklearn.utils.validation import _check_sample_weight +#from sklearn.utils.validation import _check_sample_weight from sklearn.isotonic import IsotonicRegression from sklearn.svm import LinearSVC from sklearn.model_selection import check_cv, cross_val_predict @@ -586,4 +586,4 @@ def calibration_curve(y_true, y_prob, *, normalize=False, n_bins=5, prob_true = bin_true[nonzero] / bin_total[nonzero] prob_pred = bin_sums[nonzero] / bin_total[nonzero] - return prob_true, prob_pred \ No newline at end of file + return prob_true, prob_pred