huge refactoring. Feature Selection and 10FCV are nested within the LOO validation policy. For each left-out document, a FS is performed, and then 10FCV; the resulting hyperparameter optimization is used to train a final classifier on the whole training-1 document and test the left-out document
This commit is contained in:
parent
3f343c8db5
commit
98d9d7800c
|
|
@ -1,146 +0,0 @@
|
|||
import util._hide_sklearn_warnings
|
||||
from data.dante_loader import load_latin_corpus, list_authors
|
||||
from data.features import *
|
||||
from model import AuthorshipVerificator
|
||||
from util.evaluation import f1_from_counters
|
||||
import argparse
|
||||
|
||||
AUTHORS_CORPUS_I = ['Dante', 'ClaraAssisiensis', 'GiovanniBoccaccio', 'GuidoFaba', 'PierDellaVigna']
|
||||
AUTHORS_CORPUS_II = ['Dante', 'BeneFlorentinus', 'BenvenutoDaImola', 'BoncompagnoDaSigna', 'ClaraAssisiensis',
|
||||
'FilippoVillani', 'GiovanniBoccaccio', 'GiovanniDelVirgilio', 'GrazioloBambaglioli', 'GuidoDaPisa',
|
||||
'GuidoDeColumnis', 'GuidoFaba', 'IacobusDeVaragine', 'IohannesDeAppia', 'IohannesDePlanoCarpini',
|
||||
'IulianusDeSpira', 'NicolaTrevet', 'PierDellaVigna', 'PietroAlighieri', 'RaimundusLullus',
|
||||
'RyccardusDeSanctoGermano', 'ZonoDeMagnalis']
|
||||
|
||||
|
||||
DEBUG_MODE=True
|
||||
|
||||
def main():
|
||||
log = open(args.log, 'wt')
|
||||
discarded = 0
|
||||
f1_scores = []
|
||||
counters = []
|
||||
for i, author in enumerate(args.authors):
|
||||
path = args.corpuspath
|
||||
print('='*80)
|
||||
print(f'Authorship Identification for {author} (complete {i}/{len(args.authors)})')
|
||||
print(f'Corpus {path}')
|
||||
print('-'*80)
|
||||
|
||||
positive, negative, pos_files, neg_files, ep_text = load_latin_corpus(
|
||||
path, positive_author=author, unknown_target=args.unknown
|
||||
)
|
||||
files = np.asarray(pos_files + neg_files)
|
||||
if len(positive) < 2:
|
||||
discarded += 1
|
||||
print(f'discarding analysis for {author} which has only {len(positive)} documents')
|
||||
continue
|
||||
|
||||
n_full_docs = len(positive) + len(negative)
|
||||
print(f'read {n_full_docs} documents from {path}')
|
||||
|
||||
feature_extractor = FeatureExtractor(
|
||||
function_words_freq='latin',
|
||||
conjugations_freq='latin',
|
||||
features_Mendenhall=True,
|
||||
features_sentenceLengths=True,
|
||||
feature_selection_ratio=0.1 if DEBUG_MODE else 1,
|
||||
wordngrams=True, n_wordngrams=(1, 2),
|
||||
charngrams=True, n_charngrams=(3, 4, 5),
|
||||
preserve_punctuation=False,
|
||||
split_documents=True,
|
||||
split_policy=split_by_sentences,
|
||||
window_size=3,
|
||||
normalize_features=True
|
||||
)
|
||||
|
||||
Xtr, ytr, groups = feature_extractor.fit_transform(positive, negative)
|
||||
|
||||
print('Fitting the Verificator')
|
||||
if args.C is None:
|
||||
params = {'C': np.logspace(0, 1, 2)} if DEBUG_MODE else {'C': np.logspace(-3, +3, 7)}
|
||||
C = 1.
|
||||
else:
|
||||
params = None
|
||||
C = args.C
|
||||
|
||||
if args.unknown:
|
||||
av = AuthorshipVerificator(C=C, param_grid=params)
|
||||
av.fit(Xtr, ytr)
|
||||
|
||||
print(f'Checking for the hypothesis that {author} was the author of {args.unknown}')
|
||||
ep, ep_fragments = feature_extractor.transform(ep_text, return_fragments=True, window_size=3)
|
||||
pred, _ = av.predict_proba_with_fragments(ep)
|
||||
tee(f'{args.unknown}: Posterior probability for {author} is {pred:.3f}', log)
|
||||
|
||||
if args.loo:
|
||||
av = AuthorshipVerificator(C=C, param_grid=params)
|
||||
print('Validating the Verificator (Leave-One-Out)')
|
||||
score_ave, score_std, tp, fp, fn, tn = av.leave_one_out(
|
||||
Xtr, ytr, files, groups, test_lowest_index_only=True, counters=True
|
||||
)
|
||||
f1_scores.append(f1_from_counters(tp, fp, fn, tn))
|
||||
counters.append((tp, fp, fn, tn))
|
||||
tee(f'F1 for {author} = {f1_scores[-1]:.3f}', log)
|
||||
print(f'TP={tp} FP={fp} FN={fn} TN={tn}')
|
||||
|
||||
if args.loo:
|
||||
print(f'Computing macro- and micro-averages (discarded {discarded}/{len(args.authors)})')
|
||||
f1_scores = np.array(f1_scores)
|
||||
counters = np.array(counters)
|
||||
|
||||
macro_f1 = f1_scores.mean()
|
||||
micro_f1 = f1_from_counters(*counters.sum(axis=0).tolist())
|
||||
|
||||
tee(f'LOO Macro-F1 = {macro_f1:.3f}', log)
|
||||
tee(f'LOO Micro-F1 = {micro_f1:.3f}', log)
|
||||
print()
|
||||
|
||||
log.close()
|
||||
|
||||
if DEBUG_MODE:
|
||||
print('DEBUG_MODE ON')
|
||||
|
||||
|
||||
def tee(msg, log):
|
||||
print(msg)
|
||||
log.write(f'{msg}\n')
|
||||
log.flush()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import os
|
||||
|
||||
# Training settings
|
||||
parser = argparse.ArgumentParser(description='Authorship verification for Epistola XIII')
|
||||
parser.add_argument('corpuspath', type=str, metavar='CORPUSPATH',
|
||||
help=f'Path to the directory containing the corpus (documents must be named '
|
||||
f'<author>_<texname>.txt)')
|
||||
parser.add_argument('positive', type=str, default="Dante", metavar='AUTHOR',
|
||||
help= f'Positive author for the hypothesis (default "Dante"); set to "ALL" to check '
|
||||
f'every author')
|
||||
parser.add_argument('--loo', default=False, action='store_true',
|
||||
help='submit each binary classifier to leave-one-out validation')
|
||||
parser.add_argument('--unknown', type=str, metavar='PATH', default=None,
|
||||
help='path to the file of unknown paternity (default None)')
|
||||
parser.add_argument('--log', type=str, metavar='PATH', default='./results.txt',
|
||||
help='path to the log file where to write the results (default ./results.txt)')
|
||||
parser.add_argument('--C', type=float, metavar='C', default=None,
|
||||
help='set the parameter C (trade off between error and margin) or leave as None to optimize')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.positive == 'ALL':
|
||||
args.authors = list_authors(args.corpuspath, skip_prefix='Epistola')
|
||||
else:
|
||||
if (args.positive not in AUTHORS_CORPUS_I) and (args.positive in AUTHORS_CORPUS_II):
|
||||
print(f'warning: author {args.positive} is not in the known list of authors for CORPUS I nor CORPUS II')
|
||||
assert args.positive in list_authors(args.corpuspath, skip_prefix='Epistola'), 'unexpected author'
|
||||
args.authors = [args.positive]
|
||||
|
||||
assert args.unknown or args.loo, 'error: nor an unknown document, nor LOO have been requested. Nothing to do.'
|
||||
assert os.path.exists(args.corpuspath), f'corpus path {args.corpuspath} does not exist'
|
||||
assert args.unknown is None or os.path.exists(args.unknown), '"unknown file" does not exist'
|
||||
|
||||
main()
|
||||
|
||||
|
|
@ -1,111 +1,84 @@
|
|||
#import util._hide_sklearn_warnings
|
||||
from data.dante_loader import load_latin_corpus, list_authors
|
||||
from data.dante_loader import load_latin_corpus
|
||||
from data.features import *
|
||||
from model import AuthorshipVerificator, RangeFeatureSelector, leave_one_out
|
||||
from util.evaluation import f1_from_counters
|
||||
from model import AuthorshipVerificator
|
||||
import settings
|
||||
from util.evaluation import f1_from_counters, leave_one_out
|
||||
import argparse
|
||||
from sklearn.pipeline import Pipeline
|
||||
|
||||
AUTHORS_CORPUS_I = ['Dante', 'ClaraAssisiensis', 'GiovanniBoccaccio', 'GuidoFaba', 'PierDellaVigna']
|
||||
AUTHORS_CORPUS_II = ['Dante', 'BeneFlorentinus', 'BenvenutoDaImola', 'BoncompagnoDaSigna', 'ClaraAssisiensis',
|
||||
'FilippoVillani', 'GiovanniBoccaccio', 'GiovanniDelVirgilio', 'GrazioloBambaglioli', 'GuidoDaPisa',
|
||||
'GuidoDeColumnis', 'GuidoFaba', 'IacobusDeVaragine', 'IohannesDeAppia', 'IohannesDePlanoCarpini',
|
||||
'IulianusDeSpira', 'NicolaTrevet', 'PierDellaVigna', 'PietroAlighieri', 'RaimundusLullus',
|
||||
'RyccardusDeSanctoGermano', 'ZonoDeMagnalis']
|
||||
|
||||
|
||||
DEBUG_MODE = True
|
||||
|
||||
import pickle
|
||||
import helpers
|
||||
from helpers import tee
|
||||
import os
|
||||
|
||||
def main():
|
||||
log = open(args.log, 'wt')
|
||||
discarded = 0
|
||||
f1_scores = []
|
||||
counters = []
|
||||
f1_scores, acc_scores, counters = [], [], []
|
||||
path = args.corpuspath
|
||||
|
||||
for i, author in enumerate(args.authors):
|
||||
path = args.corpuspath
|
||||
|
||||
print('='*80)
|
||||
print(f'Authorship Identification for {author} (complete {i}/{len(args.authors)})')
|
||||
print(f'Corpus {path}')
|
||||
print(f'[{args.corpus_name}] Authorship Identification for {author} (complete {i}/{len(args.authors)})')
|
||||
print('-'*80)
|
||||
|
||||
positive, negative, pos_files, neg_files, ep_text = load_latin_corpus(path, positive_author=author)
|
||||
files = np.asarray(pos_files + neg_files)
|
||||
if len(positive) < 2:
|
||||
discarded += 1
|
||||
print(f'discarding analysis for {author} which has only {len(positive)} documents')
|
||||
continue
|
||||
|
||||
n_full_docs = len(positive) + len(negative)
|
||||
print(f'read {n_full_docs} documents from {path}')
|
||||
|
||||
feature_extractor = FeatureExtractor(
|
||||
function_words_freq='latin',
|
||||
conjugations_freq='latin',
|
||||
features_Mendenhall=True,
|
||||
features_sentenceLengths=True,
|
||||
feature_selection_ratio=0.05 if DEBUG_MODE else 1,
|
||||
wordngrams=True, n_wordngrams=(1, 2),
|
||||
charngrams=True, n_charngrams=(3, 4, 5),
|
||||
preserve_punctuation=False,
|
||||
split_documents=True,
|
||||
split_policy=split_by_sentences,
|
||||
window_size=3,
|
||||
normalize_features=True
|
||||
)
|
||||
|
||||
Xtr, ytr, groups = feature_extractor.fit_transform(positive, negative)
|
||||
|
||||
print('Fitting the Verificator')
|
||||
#params = {'C': np.logspace(0, 1, 2)} if DEBUG_MODE else {'C': np.logspace(-3, +3, 7)}
|
||||
params = {'C': np.logspace(0, 1, 2)} if DEBUG_MODE else {'C': [1,10,100,1000,0.1,0.01,0.001]}
|
||||
|
||||
slice_charngrams = feature_extractor.feature_range['_cngrams_task']
|
||||
slice_wordngrams = feature_extractor.feature_range['_wngrams_task']
|
||||
if slice_charngrams.start < slice_wordngrams.start:
|
||||
slice_first, slice_second = slice_charngrams, slice_wordngrams
|
||||
pickle_file = f'Corpus{args.corpus_name}.Author{author}.window3.GFS1.pickle'
|
||||
if os.path.exists(pickle_file):
|
||||
print(f'pickle {pickle_file} exists... loading it')
|
||||
Xtr, ytr, groups, files, frange_chgrams, frange_wograms, fragments_range = pickle.load(open(pickle_file, 'rb'))
|
||||
else:
|
||||
slice_first, slice_second = slice_wordngrams, slice_charngrams
|
||||
av = Pipeline([
|
||||
('featsel_cngrams', RangeFeatureSelector(slice_second, 0.05)),
|
||||
('featsel_wngrams', RangeFeatureSelector(slice_first, 0.05)),
|
||||
('av', AuthorshipVerificator(C=1, param_grid=params))
|
||||
])
|
||||
print(f'pickle {pickle_file} noes not exists... generating it')
|
||||
positive, negative, pos_files, neg_files, ep_text = load_latin_corpus(path, positive_author=author)
|
||||
files = np.asarray(pos_files + neg_files)
|
||||
if len(positive) < 2:
|
||||
discarded += 1
|
||||
print(f'discarding analysis for {author} which has only {len(positive)} documents')
|
||||
continue
|
||||
|
||||
n_full_docs = len(positive) + len(negative)
|
||||
print(f'read {n_full_docs} documents from {path}')
|
||||
|
||||
feature_extractor = FeatureExtractor(**settings.config_loo)
|
||||
|
||||
Xtr, ytr, groups = feature_extractor.fit_transform(positive, negative)
|
||||
frange_chgrams = feature_extractor.feature_range['_cngrams_task']
|
||||
frange_wograms = feature_extractor.feature_range['_wngrams_task']
|
||||
fragments_range = feature_extractor.fragments_range
|
||||
pickle.dump((Xtr, ytr, groups, files, frange_chgrams, frange_wograms, fragments_range),
|
||||
open(pickle_file, 'wb'), pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
learner = args.learner.lower()
|
||||
av = AuthorshipVerificator(learner=learner, C=settings.DEFAULT_C, alpha=settings.DEFAULT_ALPHA,
|
||||
param_grid=settings.param_grid[learner], class_weight=args.class_weight,
|
||||
random_seed=settings.SEED, feat_selection_slices=[frange_chgrams, frange_wograms],
|
||||
feat_selection_ratio=args.featsel)
|
||||
|
||||
print('Validating the Verificator (Leave-One-Out)')
|
||||
score_ave, score_std, tp, fp, fn, tn = leave_one_out(
|
||||
av, Xtr, ytr, files, groups, test_lowest_index_only=True, counters=True
|
||||
)
|
||||
f1_scores.append(f1_from_counters(tp, fp, fn, tn))
|
||||
accuracy, f1, tp, fp, fn, tn, missclassified = leave_one_out(av, Xtr, ytr, files, groups)
|
||||
acc_scores.append(accuracy)
|
||||
f1_scores.append(f1)
|
||||
counters.append((tp, fp, fn, tn))
|
||||
tee(f'F1 for {author} = {f1_scores[-1]:.3f}', log)
|
||||
print(f'TP={tp} FP={fp} FN={fn} TN={tn}')
|
||||
|
||||
tee(f'{author}',log)
|
||||
tee(f'\tF1 = {f1:.3f}', log)
|
||||
tee(f'\tAcc = {accuracy:.3f}', log)
|
||||
tee(f'\tTP={tp} FP={fp} FN={fn} TN={tn}', log)
|
||||
tee(f'\tErrors for {author}: {", ".join(missclassified)}', log)
|
||||
|
||||
print(f'Computing macro- and micro-averages (discarded {discarded}/{len(args.authors)})')
|
||||
f1_scores = np.array(f1_scores)
|
||||
counters = np.array(counters)
|
||||
|
||||
macro_f1 = f1_scores.mean()
|
||||
acc_mean = np.array(acc_scores).mean()
|
||||
macro_f1 = np.array(f1_scores).mean()
|
||||
micro_f1 = f1_from_counters(*counters.sum(axis=0).tolist())
|
||||
|
||||
tee(f'LOO Macro-F1 = {macro_f1:.3f}', log)
|
||||
tee(f'LOO Micro-F1 = {micro_f1:.3f}', log)
|
||||
print()
|
||||
tee(f'LOO Accuracy = {acc_mean:.3f}', log)
|
||||
|
||||
log.close()
|
||||
|
||||
if DEBUG_MODE:
|
||||
print('DEBUG_MODE ON')
|
||||
|
||||
|
||||
def tee(msg, log):
|
||||
print(msg)
|
||||
log.write(f'{msg}\n')
|
||||
log.flush()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import os
|
||||
|
||||
# Training settings
|
||||
parser = argparse.ArgumentParser(description='Authorship verification for MedLatin '
|
||||
|
|
@ -117,20 +90,23 @@ if __name__ == '__main__':
|
|||
help= f'Positive author for the hypothesis (default "Dante"); set to "ALL" to check '
|
||||
f'every author')
|
||||
parser.add_argument('--log', type=str, metavar='PATH', default=None,
|
||||
help='path to the log file where to write the results '
|
||||
'(if not specified, then ./results_{corpuspath.name})')
|
||||
help='path to the log file where to write the results (if not specified, then the name is'
|
||||
'automatically generated from the arguments and stored in ../results/)')
|
||||
parser.add_argument('--featsel', default=0.1, metavar='FEAT_SEL_RATIO',
|
||||
help=f'feature selection ratio for char- and word-ngrams')
|
||||
parser.add_argument('--class_weight', type=str, default=settings.CLASS_WEIGHT, metavar='CLASS_WEIGHT',
|
||||
help=f"whether or not to reweight classes' importance")
|
||||
parser.add_argument('--learner', type=str, default='lr', metavar='LEARNER',
|
||||
help=f"classification learner (lr, svm, mnb)")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.positive == 'ALL':
|
||||
args.authors = list_authors(args.corpuspath, skip_prefix='Epistola')
|
||||
else:
|
||||
if (args.positive not in AUTHORS_CORPUS_I) and (args.positive in AUTHORS_CORPUS_II):
|
||||
print(f'warning: author {args.positive} is not in the known list of authors for CORPUS I nor CORPUS II')
|
||||
assert args.positive in list_authors(args.corpuspath, skip_prefix='Epistola'), 'unexpected author'
|
||||
args.authors = [args.positive]
|
||||
|
||||
assert os.path.exists(args.corpuspath), f'corpus path {args.corpuspath} does not exist'
|
||||
helpers.check_author(args)
|
||||
helpers.check_feat_sel_range(args)
|
||||
helpers.check_class_weight(args)
|
||||
helpers.check_corpus_path(args)
|
||||
helpers.check_learner(args)
|
||||
helpers.check_log_loo(args)
|
||||
|
||||
main()
|
||||
|
||||
|
|
|
|||
|
|
@ -1,146 +1,101 @@
|
|||
import util._hide_sklearn_warnings
|
||||
from data.dante_loader import load_latin_corpus, list_authors
|
||||
from data.features import *
|
||||
from model import AuthorshipVerificator
|
||||
from util.evaluation import f1_from_counters
|
||||
import settings
|
||||
import argparse
|
||||
import helpers
|
||||
from helpers import tee
|
||||
import os
|
||||
import pickle
|
||||
|
||||
AUTHORS_CORPUS_I = ['Dante', 'ClaraAssisiensis', 'GiovanniBoccaccio', 'GuidoFaba', 'PierDellaVigna']
|
||||
AUTHORS_CORPUS_II = ['Dante', 'BeneFlorentinus', 'BenvenutoDaImola', 'BoncompagnoDaSigna', 'ClaraAssisiensis',
|
||||
'FilippoVillani', 'GiovanniBoccaccio', 'GiovanniDelVirgilio', 'GrazioloBambaglioli', 'GuidoDaPisa',
|
||||
'GuidoDeColumnis', 'GuidoFaba', 'IacobusDeVaragine', 'IohannesDeAppia', 'IohannesDePlanoCarpini',
|
||||
'IulianusDeSpira', 'NicolaTrevet', 'PierDellaVigna', 'PietroAlighieri', 'RaimundusLullus',
|
||||
'RyccardusDeSanctoGermano', 'ZonoDeMagnalis']
|
||||
|
||||
|
||||
DEBUG_MODE=True
|
||||
|
||||
def main():
|
||||
log = open(args.log, 'wt')
|
||||
|
||||
discarded = 0
|
||||
f1_scores = []
|
||||
counters = []
|
||||
path = args.corpuspath
|
||||
|
||||
for i, author in enumerate(args.authors):
|
||||
path = args.corpuspath
|
||||
print('='*80)
|
||||
print(f'Authorship Identification for {author} (complete {i}/{len(args.authors)})')
|
||||
print(f'Corpus {path}')
|
||||
print(f'[{args.corpus_name}] Authorship Identification for {author} (complete {i}/{len(args.authors)})')
|
||||
print('-'*80)
|
||||
|
||||
positive, negative, pos_files, neg_files, ep_text = load_latin_corpus(
|
||||
path, positive_author=author, unknown_target=args.unknown
|
||||
)
|
||||
files = np.asarray(pos_files + neg_files)
|
||||
if len(positive) < 2:
|
||||
discarded += 1
|
||||
print(f'discarding analysis for {author} which has only {len(positive)} documents')
|
||||
continue
|
||||
|
||||
n_full_docs = len(positive) + len(negative)
|
||||
print(f'read {n_full_docs} documents from {path}')
|
||||
|
||||
feature_extractor = FeatureExtractor(
|
||||
function_words_freq='latin',
|
||||
conjugations_freq='latin',
|
||||
features_Mendenhall=True,
|
||||
features_sentenceLengths=True,
|
||||
feature_selection_ratio=0.1 if DEBUG_MODE else 1,
|
||||
wordngrams=True, n_wordngrams=(1, 2),
|
||||
charngrams=True, n_charngrams=(3, 4, 5),
|
||||
preserve_punctuation=False,
|
||||
split_documents=True,
|
||||
split_policy=split_by_sentences,
|
||||
window_size=3,
|
||||
normalize_features=True
|
||||
)
|
||||
|
||||
Xtr, ytr, groups = feature_extractor.fit_transform(positive, negative)
|
||||
|
||||
print('Fitting the Verificator')
|
||||
if args.C is None:
|
||||
params = {'C': np.logspace(0, 1, 2)} if DEBUG_MODE else {'C': np.logspace(-3, +3, 7)}
|
||||
C = 1.
|
||||
pickle_file = f'Corpus{args.corpus_name}.Author{author}.window3.GFS{args.featsel}.unk{args.unknown_name}.pickle'
|
||||
if os.path.exists(pickle_file):
|
||||
print(f'pickle {pickle_file} exists... loading it')
|
||||
Xtr, ytr, groups, files, frange_chgrams, frange_wograms, fragments_range, ep, ep_fragments = \
|
||||
pickle.load(open(pickle_file, 'rb'))
|
||||
else:
|
||||
params = None
|
||||
C = args.C
|
||||
print(f'pickle {pickle_file} noes not exists... generating it')
|
||||
positive, negative, pos_files, neg_files, ep_text = \
|
||||
load_latin_corpus(path, positive_author=author, unknown_target=args.unknown)
|
||||
files = np.asarray(pos_files + neg_files)
|
||||
if len(positive) < 2:
|
||||
discarded += 1
|
||||
print(f'discarding analysis for {author} which has only {len(positive)} documents')
|
||||
continue
|
||||
|
||||
if args.unknown:
|
||||
av = AuthorshipVerificator(C=C, param_grid=params)
|
||||
av.fit(Xtr, ytr)
|
||||
n_full_docs = len(positive) + len(negative)
|
||||
print(f'read {n_full_docs} documents from {path}')
|
||||
|
||||
settings.config_unk['feature_selection_ratio'] = args.featsel
|
||||
feature_extractor = FeatureExtractor(**settings.config_unk)
|
||||
|
||||
Xtr, ytr, groups = feature_extractor.fit_transform(positive, negative)
|
||||
frange_chgrams = feature_extractor.feature_range['_cngrams_task']
|
||||
frange_wograms = feature_extractor.feature_range['_wngrams_task']
|
||||
fragments_range = feature_extractor.fragments_range
|
||||
|
||||
print(f'Checking for the hypothesis that {author} was the author of {args.unknown}')
|
||||
ep, ep_fragments = feature_extractor.transform(ep_text, return_fragments=True, window_size=3)
|
||||
pred, _ = av.predict_proba_with_fragments(ep)
|
||||
tee(f'{args.unknown}: Posterior probability for {author} is {pred:.3f}', log)
|
||||
|
||||
if args.loo:
|
||||
av = AuthorshipVerificator(C=C, param_grid=params)
|
||||
print('Validating the Verificator (Leave-One-Out)')
|
||||
score_ave, score_std, tp, fp, fn, tn = av.leave_one_out(
|
||||
Xtr, ytr, files, groups, test_lowest_index_only=True, counters=True
|
||||
)
|
||||
f1_scores.append(f1_from_counters(tp, fp, fn, tn))
|
||||
counters.append((tp, fp, fn, tn))
|
||||
tee(f'F1 for {author} = {f1_scores[-1]:.3f}', log)
|
||||
print(f'TP={tp} FP={fp} FN={fn} TN={tn}')
|
||||
pickle.dump((Xtr, ytr, groups, files, frange_chgrams, frange_wograms, fragments_range, ep, ep_fragments),
|
||||
open(pickle_file, 'wb'), pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
if args.loo:
|
||||
print(f'Computing macro- and micro-averages (discarded {discarded}/{len(args.authors)})')
|
||||
f1_scores = np.array(f1_scores)
|
||||
counters = np.array(counters)
|
||||
learner = args.learner.lower()
|
||||
av = AuthorshipVerificator(learner=learner, C=settings.DEFAULT_C, alpha=settings.DEFAULT_ALPHA,
|
||||
param_grid=settings.param_grid[learner], class_weight=args.class_weight,
|
||||
random_seed=settings.SEED)
|
||||
|
||||
macro_f1 = f1_scores.mean()
|
||||
micro_f1 = f1_from_counters(*counters.sum(axis=0).tolist())
|
||||
av.fit(Xtr, ytr, groups)
|
||||
|
||||
tee(f'LOO Macro-F1 = {macro_f1:.3f}', log)
|
||||
tee(f'LOO Micro-F1 = {micro_f1:.3f}', log)
|
||||
print()
|
||||
print(f'Checking for the hypothesis that {author} was the author of {args.unknown_name}')
|
||||
pred = av.predict_proba(ep)
|
||||
pred = pred[0,1]
|
||||
tee(f'{args.unknown}: Posterior probability for {author} is {pred:.4f}', log)
|
||||
|
||||
log.close()
|
||||
|
||||
if DEBUG_MODE:
|
||||
print('DEBUG_MODE ON')
|
||||
|
||||
|
||||
def tee(msg, log):
|
||||
print(msg)
|
||||
log.write(f'{msg}\n')
|
||||
log.flush()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import os
|
||||
|
||||
# Training settings
|
||||
parser = argparse.ArgumentParser(description='Authorship verification for Epistola XIII')
|
||||
parser = argparse.ArgumentParser(description='Authorship verification for a text of unknown paternity')
|
||||
parser.add_argument('corpuspath', type=str, metavar='CORPUSPATH',
|
||||
help=f'Path to the directory containing the corpus (documents must be named '
|
||||
f'<author>_<texname>.txt)')
|
||||
parser.add_argument('positive', type=str, default="Dante", metavar='AUTHOR',
|
||||
help= f'Positive author for the hypothesis (default "Dante"); set to "ALL" to check '
|
||||
f'every author')
|
||||
parser.add_argument('--loo', default=False, action='store_true',
|
||||
help='submit each binary classifier to leave-one-out validation')
|
||||
parser.add_argument('--unknown', type=str, metavar='PATH', default=None,
|
||||
parser.add_argument('unknown', type=str, metavar='PATH', default=None,
|
||||
help='path to the file of unknown paternity (default None)')
|
||||
parser.add_argument('--log', type=str, metavar='PATH', default='./results.txt',
|
||||
help='path to the log file where to write the results (default ./results.txt)')
|
||||
parser.add_argument('--C', type=float, metavar='C', default=None,
|
||||
help='set the parameter C (trade off between error and margin) or leave as None to optimize')
|
||||
parser.add_argument('--log', type=str, metavar='PATH', default=None,
|
||||
help='path to the log file where to write the results (if not specified, then the name is'
|
||||
'automatically generated from the arguments and stored in ../results/)')
|
||||
parser.add_argument('--featsel', default=0.1, metavar='FEAT_SEL_RATIO',
|
||||
help=f'feature selection ratio for char- and word-ngrams')
|
||||
parser.add_argument('--class_weight', type=str, default=settings.CLASS_WEIGHT, metavar='CLASS_WEIGHT',
|
||||
help=f"whether or not to reweight classes' importance")
|
||||
parser.add_argument('--learner', type=str, default='LR', metavar='LEARNER',
|
||||
help=f"classification learner (LR, SVM, MNB, RF)")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.positive == 'ALL':
|
||||
args.authors = list_authors(args.corpuspath, skip_prefix='Epistola')
|
||||
else:
|
||||
if (args.positive not in AUTHORS_CORPUS_I) and (args.positive in AUTHORS_CORPUS_II):
|
||||
print(f'warning: author {args.positive} is not in the known list of authors for CORPUS I nor CORPUS II')
|
||||
assert args.positive in list_authors(args.corpuspath, skip_prefix='Epistola'), 'unexpected author'
|
||||
args.authors = [args.positive]
|
||||
|
||||
assert args.unknown or args.loo, 'error: nor an unknown document, nor LOO have been requested. Nothing to do.'
|
||||
assert os.path.exists(args.corpuspath), f'corpus path {args.corpuspath} does not exist'
|
||||
assert args.unknown is None or os.path.exists(args.unknown), '"unknown file" does not exist'
|
||||
helpers.check_author(args)
|
||||
helpers.check_feat_sel_range(args)
|
||||
helpers.check_class_weight(args)
|
||||
helpers.check_corpus_path(args)
|
||||
helpers.check_learner(args)
|
||||
helpers.check_log_unknown(args)
|
||||
|
||||
main()
|
||||
|
||||
|
|
|
|||
|
|
@ -372,8 +372,8 @@ class FeatureExtractor:
|
|||
def fit_transform(self, positives, negatives):
|
||||
documents = positives + negatives
|
||||
authors = [1]*len(positives) + [0]*len(negatives)
|
||||
n_original_docs = len(documents)
|
||||
groups = list(range(n_original_docs))
|
||||
self.n_original_docs = len(documents)
|
||||
groups = list(range(self.n_original_docs))
|
||||
|
||||
if self.split_documents:
|
||||
doc_fragments, authors_fragments, groups_fragments = splitter(
|
||||
|
|
@ -383,7 +383,7 @@ class FeatureExtractor:
|
|||
authors.extend(authors_fragments)
|
||||
groups.extend(groups_fragments)
|
||||
self._print(f'splitting documents: {len(doc_fragments)} segments + '
|
||||
f'{n_original_docs} documents = '
|
||||
f'{self.n_original_docs} documents = '
|
||||
f'{len(documents)} total')
|
||||
|
||||
# represent the target vector
|
||||
|
|
@ -398,10 +398,11 @@ class FeatureExtractor:
|
|||
f'features_Mendenhall={self.features_Mendenhall} tfidf={self.wngrams} '
|
||||
f'split_documents={self.split_documents}, split_policy={self.split_policy.__name__}'
|
||||
)
|
||||
print(f'number of training (full) documents: {n_original_docs}')
|
||||
print(f'number of training (full) documents: {self.n_original_docs}')
|
||||
print(f'y prevalence: {y.sum()}/{len(y)} {y.mean() * 100:.2f}%')
|
||||
print()
|
||||
|
||||
self.fragments_range = slice(self.n_original_docs, len(y))
|
||||
return X, y, groups
|
||||
|
||||
def transform(self, test, return_fragments=False, window_size=-1, avoid_splitting=False):
|
||||
|
|
@ -520,11 +521,10 @@ class FeatureExtractor:
|
|||
else:
|
||||
X = self._addfeatures(_tocsr(X), out['features'], taskname, out['f_names'] if fit else None)
|
||||
if fit:
|
||||
vectorizer, selector = out['vectorizer'], out['selector']
|
||||
if taskname == '_wngrams_task' and self.wngrams_vectorizer is None:
|
||||
self.wngrams_vectorizer, self.wngrams_selector = vectorizer, selector
|
||||
elif taskname == '_cngrams_task' and self.cngrams_vectorizer is None:
|
||||
self.cngrams_vectorizer, self.cngrams_selector = vectorizer, selector
|
||||
if taskname == '_wngrams_task':
|
||||
self.wngrams_vectorizer, self.wngrams_selector = out['vectorizer'], out['selector']
|
||||
elif taskname == '_cngrams_task':
|
||||
self.cngrams_vectorizer, self.cngrams_selector = out['vectorizer'], out['selector']
|
||||
|
||||
if fit:
|
||||
self.feature_names = np.asarray(self.feature_names)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,62 @@
|
|||
import settings
|
||||
from data.dante_loader import list_authors
|
||||
import os
|
||||
import pathlib
|
||||
|
||||
|
||||
def tee(msg, log):
|
||||
print(msg)
|
||||
log.write(f'{msg}\n')
|
||||
log.flush()
|
||||
|
||||
|
||||
def check_author(args):
|
||||
if args.positive == 'ALL':
|
||||
args.authors = list_authors(args.corpuspath, skip_prefix='Epistola')
|
||||
else:
|
||||
if (args.positive not in settings.AUTHORS_CORPUS_I) and (args.positive in settings.AUTHORS_CORPUS_II):
|
||||
print(f'warning: author {args.positive} is not in the known list of authors for CORPUS I nor CORPUS II')
|
||||
assert args.positive in list_authors(args.corpuspath, skip_prefix='Epistola'), 'unexpected author'
|
||||
args.authors = [args.positive]
|
||||
|
||||
|
||||
def check_feat_sel_range(args):
|
||||
if not isinstance(args.featsel, float):
|
||||
if isinstance(args.featsel, str) and '.' in args.featsel:
|
||||
args.featsel = float(args.featsel)
|
||||
else:
|
||||
args.featsel = int(args.featsel)
|
||||
if isinstance(args.featsel, float):
|
||||
assert 0 < args.featsel <= 1, 'feature selection ratio out of range'
|
||||
|
||||
|
||||
def check_class_weight(args):
|
||||
assert args.class_weight in ['balanced', 'none', 'None']
|
||||
if args.class_weight.lower() == 'none':
|
||||
args.class_weight = None
|
||||
|
||||
|
||||
def check_corpus_path(args):
|
||||
assert os.path.exists(args.corpuspath), f'corpus path {args.corpuspath} does not exist'
|
||||
args.corpus_name = pathlib.Path(args.corpuspath).name
|
||||
|
||||
|
||||
def check_learner(args):
|
||||
assert args.learner.lower() in settings.param_grid.keys(), \
|
||||
f'unknown learner, use any in {settings.param_grid.keys()}'
|
||||
|
||||
|
||||
def check_log_loo(args):
|
||||
if args.log is None:
|
||||
os.makedirs('../results', exist_ok=True)
|
||||
args.log = f'../results/LOO_Corpus{args.corpus_name}.Author{args.positive}.' \
|
||||
f'fs{args.featsel}.classweight{str(args.class_weight)}.CLS{args.learner}.txt'
|
||||
|
||||
|
||||
def check_log_unknown(args):
|
||||
if args.log is None:
|
||||
os.makedirs('../results', exist_ok=True)
|
||||
assert os.path.exists(args.unknown), f'file {args.unknown} does not exist'
|
||||
args.unknown_name = pathlib.Path(args.unknown).name
|
||||
args.log = f'../results/Unknown{args.unknown_name}_Corpus{args.corpus_name}.Author{args.positive}.' \
|
||||
f'fs{args.featsel}.classweight{str(args.class_weight)}.CLS{args.learner}.txt'
|
||||
181
src/model.py
181
src/model.py
|
|
@ -1,117 +1,152 @@
|
|||
from sklearn.base import BaseEstimator, TransformerMixin
|
||||
from sklearn.metrics import make_scorer
|
||||
from sklearn.model_selection import GridSearchCV, LeaveOneOut, LeaveOneGroupOut, cross_val_score, StratifiedKFold
|
||||
from sklearn.model_selection import GridSearchCV, GroupKFold
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.naive_bayes import MultinomialNB
|
||||
from sklearn.svm import LinearSVC
|
||||
from data.features import *
|
||||
from util.evaluation import f1, get_counters
|
||||
from util.evaluation import f1_metric
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
|
||||
class AuthorshipVerificator(BaseEstimator):
|
||||
|
||||
def __init__(self,
|
||||
nfolds=10,
|
||||
param_grid={'C': np.logspace(-4, +3, 8)},
|
||||
C=1.,
|
||||
author_name=None):
|
||||
def __init__(self, nfolds=10, param_grid=None, learner=None, C=1., alpha=0.001, class_weight='balanced',
|
||||
random_seed=41, feat_selection_slices=None, feat_selection_ratio=1):
|
||||
self.nfolds = nfolds
|
||||
self.param_grid = param_grid
|
||||
self.learner = learner
|
||||
self.C = C
|
||||
self.author_name = author_name
|
||||
self.alpha = alpha
|
||||
self.class_weight = class_weight
|
||||
self.random_seed = random_seed
|
||||
self.feat_selection_slices = feat_selection_slices
|
||||
self.feat_selection_ratio = feat_selection_ratio
|
||||
|
||||
def fit(self, X, y, groups=None, hyperparam_optimization=True):
|
||||
if self.param_grid is None and hyperparam_optimization:
|
||||
raise ValueError('Param grid is None, but hyperparameter optimization is requested')
|
||||
|
||||
if self.feat_selection_slices is not None:
|
||||
self.fs = MultiRangeFeatureSelector(self.feat_selection_slices, feat_sel=self.feat_selection_ratio)
|
||||
X = self.fs.fit(X, y).transform(X)
|
||||
|
||||
if self.learner == 'lr':
|
||||
self.classifier = LogisticRegression(
|
||||
C=self.C, class_weight=self.class_weight, max_iter=1000, random_state=self.random_seed, solver='lbfgs'
|
||||
)
|
||||
elif self.learner == 'svm':
|
||||
self.classifier = LinearSVC(C=self.C, class_weight=self.class_weight)
|
||||
elif self.learner == 'mnb':
|
||||
self.classifier = MultinomialNB(alpha=self.alpha)
|
||||
|
||||
def fit(self, X, y):
|
||||
self.classifier = LogisticRegression(C=self.C, class_weight='balanced', solver='lbfgs', max_iter=1000)
|
||||
y = np.asarray(y)
|
||||
positive_examples = y.sum()
|
||||
if positive_examples >= self.nfolds and self.param_grid is not None:
|
||||
print('optimizing {}'.format(self.classifier.__class__.__name__))
|
||||
folds = list(StratifiedKFold(n_splits=self.nfolds, shuffle=True, random_state=42).split(X, y))
|
||||
|
||||
if groups is None:
|
||||
groups = np.arange(len(y))
|
||||
|
||||
if hyperparam_optimization and (positive_examples >= self.nfolds) and (len(np.unique(groups[y==1])) > 1):
|
||||
folds = list(GroupKFold(n_splits=self.nfolds).split(X, y, groups))
|
||||
self.estimator = GridSearchCV(
|
||||
self.classifier, param_grid=self.param_grid, cv=folds, scoring=make_scorer(f1), n_jobs=-1
|
||||
self.classifier, param_grid=self.param_grid, cv=folds, scoring=make_scorer(f1_metric), n_jobs=-1,
|
||||
refit=True, error_score=0
|
||||
)
|
||||
else:
|
||||
# insufficient positive examples or document groups for grid-search; using default classifier
|
||||
print('insufficient positive examples or document groups for grid-search; using default classifier')
|
||||
self.estimator = self.classifier
|
||||
|
||||
self.estimator.fit(X, y)
|
||||
|
||||
if isinstance(self.estimator, GridSearchCV):
|
||||
f1_mean = self.estimator.best_score_.mean()
|
||||
print(f'Best params: {self.estimator.best_params_} (cross-validation F1={f1_mean:.3f})')
|
||||
self.estimator = self.estimator.best_estimator_
|
||||
self.choosen_params_ = self.estimator.best_params_
|
||||
print(f'Best params: {self.choosen_params_} (cross-validation F1={f1_mean:.3f})')
|
||||
else:
|
||||
self.choosen_params_ = {'C': self.C, 'alpha': self.alpha}
|
||||
|
||||
return self
|
||||
|
||||
def predict_with_fragments(self, test):
|
||||
pred = self.estimator.predict(test)
|
||||
full_doc_prediction = pred[0]
|
||||
if len(pred) > 1:
|
||||
fragment_predictions = pred[1:]
|
||||
print('fragments average {:.3f}, array={}'.format(fragment_predictions.mean(), fragment_predictions))
|
||||
return full_doc_prediction, fragment_predictions
|
||||
return full_doc_prediction
|
||||
|
||||
def predict(self, test):
|
||||
if self.feat_selection_slices is not None:
|
||||
test = self.fs.transform(test)
|
||||
return self.estimator.predict(test)
|
||||
|
||||
def predict_proba_with_fragments(self, test):
|
||||
assert hasattr(self, 'predict_proba'), 'the classifier is not calibrated'
|
||||
pred = self.estimator.predict_proba(test)
|
||||
full_doc_prediction = pred[0,1]
|
||||
if len(pred) > 1:
|
||||
fragment_predictions = pred[1:,1]
|
||||
print('fragments average {:.3f}, array={}'.format(fragment_predictions.mean(), fragment_predictions))
|
||||
return full_doc_prediction, fragment_predictions
|
||||
return full_doc_prediction, []
|
||||
|
||||
def predict_proba(self, test):
|
||||
assert hasattr(self, 'predict_proba'), 'the classifier is not calibrated'
|
||||
return self.estimator.predict_proba(test)
|
||||
|
||||
|
||||
def leave_one_out(model, X, y, files, groups=None, test_lowest_index_only=True, counters=False):
|
||||
if groups is None:
|
||||
print(f'Computing LOO without groups over {X.shape[0]} documents')
|
||||
folds = list(LeaveOneOut().split(X, y))
|
||||
else:
|
||||
print(f'Computing LOO with groups over {X.shape[0]} documents')
|
||||
logo = LeaveOneGroupOut()
|
||||
folds = list(logo.split(X, y, groups))
|
||||
if test_lowest_index_only:
|
||||
print('ignoring fragments')
|
||||
folds = [(train, np.min(test, keepdims=True)) for train, test in folds]
|
||||
|
||||
print(f'optimizing via grid search each o the {len(folds)} prediction problems')
|
||||
scores = cross_val_score(model, X, y, cv=folds, scoring=make_scorer(f1), n_jobs=-1, verbose=10)
|
||||
missclassified = files[scores == 0].tolist()
|
||||
#if hasattr(self.estimator, 'predict_proba') and len(missclassified) > 0:
|
||||
# missclassified_prob = self.estimator.predict_proba(csr_matrix(X)[scores == 0])[:, 1]
|
||||
# missclassified_prob = missclassified_prob.flatten().tolist()
|
||||
# missclassified = [f'{file} Pr={prob:.3f}' for file, prob in zip(missclassified,missclassified_prob)]
|
||||
print('missclassified texts:')
|
||||
print('\n'.join(missclassified))
|
||||
|
||||
if counters and test_lowest_index_only:
|
||||
yfull_true = y[:len(folds)]
|
||||
yfull_predict = np.zeros_like(yfull_true)
|
||||
yfull_predict[scores == 1] = yfull_true[scores == 1]
|
||||
yfull_predict[scores != 1] = 1-yfull_true[scores != 1]
|
||||
tp, fp, fn, tn = get_counters(yfull_true, yfull_predict)
|
||||
return scores.mean(), scores.std(), tp, fp, fn, tn
|
||||
else:
|
||||
return scores.mean(), scores.std()
|
||||
if self.feat_selection_slices is not None:
|
||||
test = self.fs.transform(test)
|
||||
prob = self.estimator.predict_proba(test)
|
||||
return prob
|
||||
|
||||
|
||||
class RangeFeatureSelector(BaseEstimator, TransformerMixin):
|
||||
def __init__(self, range: slice, feat_sel_ratio: float):
|
||||
|
||||
def __init__(self, range: slice, feat_sel: Union[float, int]):
|
||||
self.range = range
|
||||
self.feat_sel_ratio = feat_sel_ratio
|
||||
self.feat_sel = feat_sel
|
||||
|
||||
def fit(self, X, y):
|
||||
nF = self.range.stop-self.range.start
|
||||
num_feats = int(self.feat_sel_ratio * nF)
|
||||
if isinstance(self.feat_sel, int) and self.feat_sel>0:
|
||||
num_feats = self.feat_sel
|
||||
elif isinstance(self.feat_sel, float) and 0. <= self.feat_sel <= 1.:
|
||||
num_feats = int(self.feat_sel * nF)
|
||||
else:
|
||||
raise ValueError('feat_sel should be a positive integer or a float in [0,1]')
|
||||
self.selector = SelectKBest(chi2, k=num_feats)
|
||||
self.selector.fit(X[:,self.range], y)
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
Z = self.selector.transform(X[:,self.range])
|
||||
return csr_matrix(hstack([X[:,:self.range.start], Z, X[:,self.range.stop:]]))
|
||||
normalize(Z, norm='l2', copy=False)
|
||||
X = csr_matrix(hstack([X[:,:self.range.start], Z, X[:,self.range.stop:]]))
|
||||
return X
|
||||
|
||||
|
||||
class MultiRangeFeatureSelector(BaseEstimator, TransformerMixin):
|
||||
def __init__(self, ranges: List[slice], feat_sel: Union[float,int]):
|
||||
self.ranges = ranges
|
||||
self.feat_sel = feat_sel
|
||||
|
||||
def fit(self, X, y):
|
||||
assert isinstance(self.ranges, list), 'ranges should be a list of slices'
|
||||
self.__check_ranges_collisions(self.ranges)
|
||||
self.ranges = self.__sort_ranges(self.ranges)
|
||||
self.selectors = [RangeFeatureSelector(r, self.feat_sel).fit(X, y) for r in self.ranges]
|
||||
return self
|
||||
|
||||
def transform(self, X):
|
||||
for selector in self.selectors:
|
||||
X = selector.transform(X)
|
||||
return X
|
||||
|
||||
def __check_ranges_collisions(self, ranges: List[slice]):
|
||||
for i,range_i in enumerate(ranges):
|
||||
for j,range_j in enumerate(ranges):
|
||||
if i==j: continue
|
||||
if range_i.start <= range_j.start <= range_i.stop: return False
|
||||
if range_i.start <= range_j.stop <= range_i.stop: return False
|
||||
return True
|
||||
|
||||
def __sort_ranges(self, ranges: List[slice]):
|
||||
return np.asarray(ranges)[np.argsort([r.start for r in ranges])[::-1]]
|
||||
|
||||
|
||||
def get_valid_folds(nfolds, X, y, groups, max_trials=100):
|
||||
trials = 0
|
||||
folds = list(GroupKFold(n_splits=nfolds).split(X, y, groups))
|
||||
n_docs = len(y)
|
||||
print(f'different classes={np.unique(y)}; #different documents={len(np.unique(groups))} positives={len(np.unique(groups[y==1]))}')
|
||||
while any(len(np.unique(y[train])) < 2 for train, test in folds):
|
||||
shuffle_index = np.random.permutation(n_docs)
|
||||
X, y, groups = X[shuffle_index], y[shuffle_index], groups[shuffle_index]
|
||||
folds = list(GroupKFold(n_splits=nfolds).split(X, y, groups))
|
||||
print(f'\ttrial{trials}:{[len(np.unique(y[train])) for train, test in folds]}')
|
||||
trials+=1
|
||||
if trials>max_trials:
|
||||
raise ValueError(f'could not meet condition after {max_trials} trials')
|
||||
return folds
|
||||
|
|
|
|||
|
|
@ -0,0 +1,67 @@
|
|||
import numpy as np
|
||||
from data.features import split_by_sentences
|
||||
|
||||
AUTHORS_CORPUS_I = [
|
||||
'Dante',
|
||||
'ClaraAssisiensis',
|
||||
'GiovanniBoccaccio',
|
||||
'GuidoFaba',
|
||||
'PierDellaVigna'
|
||||
]
|
||||
|
||||
AUTHORS_CORPUS_II = [
|
||||
'Dante',
|
||||
'BeneFlorentinus',
|
||||
'BenvenutoDaImola',
|
||||
'BoncompagnoDaSigna',
|
||||
'ClaraAssisiensis',
|
||||
'FilippoVillani',
|
||||
'GiovanniBoccaccio',
|
||||
'GiovanniDelVirgilio',
|
||||
'GrazioloBambaglioli',
|
||||
'GuidoDaPisa',
|
||||
'GuidoDeColumnis',
|
||||
'GuidoFaba',
|
||||
'IacobusDeVaragine',
|
||||
'IohannesDeAppia',
|
||||
'IohannesDePlanoCarpini',
|
||||
'IulianusDeSpira',
|
||||
'NicolaTrevet',
|
||||
'PierDellaVigna',
|
||||
'PietroAlighieri',
|
||||
'RaimundusLullus',
|
||||
'RyccardusDeSanctoGermano',
|
||||
'ZonoDeMagnalis'
|
||||
]
|
||||
|
||||
DEFAULT_C = 0.1
|
||||
DEFAULT_ALPHA = 0.001
|
||||
CLASS_WEIGHT = 'balanced'
|
||||
SEED = 1
|
||||
|
||||
grid_C = np.logspace(-3,3,7)
|
||||
param_grid = {
|
||||
'lr': {'C': grid_C},
|
||||
'svm': {'C': grid_C},
|
||||
'mnb': {'alpha': np.logspace(-7,-1,7)}
|
||||
}
|
||||
|
||||
config_loo = {
|
||||
'function_words_freq': 'latin',
|
||||
'conjugations_freq': 'latin',
|
||||
'features_Mendenhall': True,
|
||||
'features_sentenceLengths': True,
|
||||
'feature_selection_ratio': 1,
|
||||
'wordngrams': True,
|
||||
'n_wordngrams': (1, 2),
|
||||
'charngrams': True,
|
||||
'n_charngrams': (3, 4, 5),
|
||||
'preserve_punctuation': False,
|
||||
'split_documents': True,
|
||||
'split_policy': split_by_sentences,
|
||||
'window_size': 3,
|
||||
'normalize_features': True
|
||||
}
|
||||
|
||||
config_unk = config_loo.copy()
|
||||
config_unk['feature_selection_ratio']=0.1
|
||||
|
|
@ -1,4 +1,8 @@
|
|||
import numpy as np
|
||||
from scipy.sparse import csr_matrix
|
||||
from sklearn.model_selection import LeaveOneGroupOut
|
||||
from tqdm import tqdm
|
||||
from joblib import Parallel, delayed
|
||||
|
||||
|
||||
def get_counters(true_labels, predicted_labels):
|
||||
|
|
@ -19,6 +23,42 @@ def f1_from_counters(tp, fp, fn, tn):
|
|||
return 1.0
|
||||
|
||||
|
||||
def f1(true_labels, predicted_labels):
|
||||
def f1_metric(true_labels, predicted_labels):
|
||||
tp, fp, fn, tn = get_counters(true_labels,predicted_labels)
|
||||
return f1_from_counters(tp, fp, fn, tn)
|
||||
return f1_from_counters(tp, fp, fn, tn)
|
||||
|
||||
|
||||
def leave_one_out(model, X, y, files, groups):
|
||||
print(f'Computing LOO with groups over {X.shape[0]} documents')
|
||||
logo = LeaveOneGroupOut()
|
||||
|
||||
# Fragments are ignored in the test; only full documents are evaluated.
|
||||
# The index of the full document is the lowest index
|
||||
folds = [(train, np.min(test, keepdims=True)) for train, test in logo.split(X, y, groups)]
|
||||
|
||||
def _classify_held_out(train, test, X, y, model):
|
||||
X = csr_matrix(X)
|
||||
# hyperparam_optim = (len(np.unique(groups[y[train] == 1])) > 2)
|
||||
model.fit(X[train], y[train], groups[train])#, hyperparam_optim=hyperparam_optim)
|
||||
y_pred = model.predict(X[test]).item()
|
||||
score = (y_pred == y[test]).item()
|
||||
return y_pred, score
|
||||
|
||||
predictions_scores = Parallel(n_jobs=-1)(
|
||||
delayed(_classify_held_out)(train, test, X, y, model) for train, test in folds
|
||||
#tqdm(
|
||||
# folds, desc=f'optimizing via grid search each of the {len(folds)} prediction problems'
|
||||
#)
|
||||
)
|
||||
predictions = np.asarray([p for p,s in predictions_scores])
|
||||
scores = np.asarray([s for p, s in predictions_scores])
|
||||
print(predictions, scores)
|
||||
|
||||
missclassified = files[scores == 0].tolist()
|
||||
|
||||
yfull_true = y[:len(folds)]
|
||||
tp, fp, fn, tn = get_counters(yfull_true, predictions)
|
||||
f1 = f1_from_counters(tp, fp, fn, tn)
|
||||
acc = scores.mean()
|
||||
|
||||
return acc, f1, tp, fp, fn, tn, missclassified
|
||||
Loading…
Reference in New Issue