from sklearn.linear_model import LogisticRegression from data.dante_loader import load_texts from data.features import * from model import AuthorshipVerificator, f1_from_counters from sklearn.svm import LinearSVC, SVC from util.color_visualization import color # DONE: ngrams should contain punctuation marks according to Sapkota et al. [39] in the PAN 2015 overview # (More recently, it was shown that character # n-grams corresponding to word affixes and including punctuation marks are the most # significant features in cross-topic authorship attribution [57].) #we have cancelled the # TODO: inspect the impact of chi-squared correlations against positive-only (or positive and negative) correlations for feature selection # TODO: sentence length (Mendenhall-style) ? for epistola in [1,2]: print('Epistola {}'.format(epistola)) print('='*80) path = '../testi_{}'.format(epistola) if epistola==2: path+='_tutti' positive, negative, ep_text = load_texts(path, positive_author='Dante', unknown_target='EpistolaXIII_{}.txt'.format(epistola)) n_full_docs = len(positive) + len(negative) feature_extractor = FeatureExtractor(function_words_freq='latin', conjugations_freq='latin', features_Mendenhall=True, features_sentenceLengths=True, tfidf_feat_selection_ratio=0.1, wordngrams=True, n_wordngrams=(1, 2), charngrams=True, n_charngrams=(3, 4, 5), preserve_punctuation=False, split_documents=True, split_policy=split_by_sentences, window_size=3, normalize_features=True) Xtr,ytr,groups = feature_extractor.fit_transform(positive, negative) print(ytr) ep, ep_fragments = feature_extractor.transform(ep_text, return_fragments=True, window_size=3) print('Fitting the Verificator') av = AuthorshipVerificator(nfolds=10, estimator=LogisticRegression) av.fit(Xtr,ytr,groups) print('Predicting the Epistola {}'.format(epistola)) title = 'Epistola {}'.format('I' if epistola==1 else 'II') av.predict(ep, title) fulldoc_prob, fragment_probs = av.predict_proba(ep, title) color(path='../dante_color/epistola{}.html'.format(epistola), texts=ep_fragments, probabilities=fragment_probs, title=title) # score_ave, score_std = av.leave_one_out(Xtr, ytr, groups, test_lowest_index_only=False) # print('LOO[full-and-fragments]={:.3f} +-{:.5f}'.format(score_ave, score_std)) score_ave, score_std, tp, fp, fn, tn = av.leave_one_out(Xtr, ytr, groups, test_lowest_index_only=True, counters=True) # print('LOO[full-docs]={:.3f} +-{:.5f}'.format(score_ave, score_std)) f1_ = f1_from_counters(tp, fp, fn, tn) print('F1 = {:.3f}'.format(f1_)) # score_ave, score_std = av.leave_one_out(Xtr, ytr, None) # print('LOO[w/o groups]={:.3f} +-{:.5f}'.format(score_ave, score_std))