testing kta
This commit is contained in:
parent
cc49ffd152
commit
a3732cff1e
20
src/main.py
20
src/main.py
|
@ -9,7 +9,6 @@ import torch
|
|||
from model.transformations import CNNProjection
|
||||
import sys
|
||||
|
||||
|
||||
hidden_size=32
|
||||
channels_out=128
|
||||
output_size=1024
|
||||
|
@ -18,12 +17,19 @@ pad_length=3000
|
|||
batch_size=50
|
||||
n_epochs=256
|
||||
bigrams=False
|
||||
n_authors=-1
|
||||
docs_by_author=-1
|
||||
|
||||
#hidden_size=16
|
||||
#output_size=32
|
||||
#pad_length=100
|
||||
#batch_size=10
|
||||
#n_epochs=20
|
||||
debug=False
|
||||
if debug:
|
||||
print(('*'*20)+' DEBUG MODE ' + ('*'*20))
|
||||
hidden_size=16
|
||||
output_size=32
|
||||
pad_length=100
|
||||
batch_size=10
|
||||
n_epochs=20
|
||||
n_authors = 5
|
||||
docs_by_author = 10
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device('cuda')
|
||||
|
@ -32,7 +38,7 @@ else:
|
|||
print(f'running on {device}')
|
||||
|
||||
#dataset = Victorian(data_path='../../authorship_analysis/data/victoria', n_authors=5, docs_by_author=25)
|
||||
dataset = Imdb62(data_path='../../authorship_analysis/data/imdb62/imdb62.txt', n_authors=-1, docs_by_author=-1)
|
||||
dataset = Imdb62(data_path='../../authorship_analysis/data/imdb62/imdb62.txt', n_authors=n_authors, docs_by_author=docs_by_author)
|
||||
Xtr, ytr = dataset.train.data, dataset.train.target
|
||||
Xte, yte = dataset.test.data, dataset.test.target
|
||||
A = np.unique(ytr)
|
||||
|
|
|
@ -18,8 +18,8 @@ class AuthorshipAttributionClassifier(nn.Module):
|
|||
self.device = device
|
||||
|
||||
def fit(self, X, y, batch_size, epochs, lr=0.001, val_prop=0.1, log='../log/tmp.csv'):
|
||||
#batcher = Batch(batch_size=batch_size, n_epochs=epochs)
|
||||
batcher = TwoClassBatch(batch_size=batch_size, n_epochs=epochs, steps_per_epoch=X.shape[0]//batch_size)
|
||||
batcher = Batch(batch_size=batch_size, n_epochs=epochs)
|
||||
#batcher = TwoClassBatch(batch_size=batch_size, n_epochs=epochs, steps_per_epoch=X.shape[0]//batch_size)
|
||||
batcher_val = Batch(batch_size=batch_size, n_epochs=epochs, shuffle=False)
|
||||
criterion = torch.nn.CrossEntropyLoss().to(self.device)
|
||||
optim = torch.optim.Adam(self.parameters(), lr=lr)
|
||||
|
@ -33,17 +33,32 @@ class AuthorshipAttributionClassifier(nn.Module):
|
|||
for epoch in pbar:
|
||||
# training
|
||||
self.train()
|
||||
losses = []
|
||||
losses, attr_losses, sav_losses = [], [], []
|
||||
for xi, yi in batcher.epoch(X, y):
|
||||
optim.zero_grad()
|
||||
xi = self.padder.transform(xi)
|
||||
logits = self.forward(xi)
|
||||
loss = criterion(logits, torch.as_tensor(yi).to(self.device))
|
||||
phi = self.projector(xi)
|
||||
|
||||
logits = self.ff(phi)
|
||||
loss_attr = criterion(logits, torch.as_tensor(yi).to(self.device))
|
||||
|
||||
kernel = torch.matmul(phi, phi.T)
|
||||
ideal_kernel = torch.as_tensor(1 * (np.outer(1 + yi, 1 / (yi + 1)) == 1)).to(self.device)
|
||||
loss_sav = KernelAlignmentLoss(kernel, ideal_kernel)
|
||||
|
||||
loss = loss_attr + loss_sav
|
||||
|
||||
loss.backward()
|
||||
optim.step()
|
||||
|
||||
attr_losses.append(loss_attr.item())
|
||||
sav_losses.append(loss_sav.item())
|
||||
losses.append(loss.item())
|
||||
tr_loss = np.mean(losses)
|
||||
pbar.set_description(f'training epoch={epoch} loss={tr_loss:.5f} val_loss={val_loss:.5f}')
|
||||
pbar.set_description(f'training epoch={epoch} '
|
||||
f'loss={tr_loss:.5f} '
|
||||
f'attr-loss={np.mean(attr_losses):.5f} '
|
||||
f'sav-loss={np.mean(sav_losses):.5f} val_loss={val_loss:.5f}')
|
||||
|
||||
# validation
|
||||
self.eval()
|
||||
|
|
Loading…
Reference in New Issue