trying supervised contrastive learning
This commit is contained in:
parent
1cd9ec251a
commit
e1047c2beb
|
@ -0,0 +1,191 @@
|
|||
"""
|
||||
Author: Yonglong Tian (yonglong@mit.edu)
|
||||
Date: May 07, 2020
|
||||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
|
||||
class SupConLoss(nn.Module):
|
||||
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
|
||||
It also supports the unsupervised contrastive loss in SimCLR"""
|
||||
def __init__(self, temperature=0.07, contrast_mode='all',
|
||||
base_temperature=0.07):
|
||||
super(SupConLoss, self).__init__()
|
||||
self.temperature = temperature
|
||||
self.contrast_mode = contrast_mode
|
||||
self.base_temperature = base_temperature
|
||||
|
||||
def forward(self, features, labels=None, mask=None):
|
||||
"""Compute loss for model. If both `labels` and `mask` are None,
|
||||
it degenerates to SimCLR unsupervised loss:
|
||||
https://arxiv.org/pdf/2002.05709.pdf
|
||||
|
||||
Args:
|
||||
features: hidden vector of shape [bsz, n_views, ...].
|
||||
labels: ground truth of shape [bsz].
|
||||
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
|
||||
has the same class as sample i. Can be asymmetric.
|
||||
Returns:
|
||||
A loss scalar.
|
||||
"""
|
||||
device = (torch.device('cuda')
|
||||
if features.is_cuda
|
||||
else torch.device('cpu'))
|
||||
|
||||
if len(features.shape) < 3:
|
||||
raise ValueError('`features` needs to be [bsz, n_views, ...],'
|
||||
'at least 3 dimensions are required')
|
||||
if len(features.shape) > 3:
|
||||
features = features.view(features.shape[0], features.shape[1], -1)
|
||||
|
||||
batch_size = features.shape[0]
|
||||
if labels is not None and mask is not None:
|
||||
raise ValueError('Cannot define both `labels` and `mask`')
|
||||
elif labels is None and mask is None:
|
||||
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
|
||||
elif labels is not None:
|
||||
labels = labels.contiguous().view(-1, 1)
|
||||
if labels.shape[0] != batch_size:
|
||||
raise ValueError('Num of labels does not match num of features')
|
||||
mask = torch.eq(labels, labels.T).float().to(device)
|
||||
else:
|
||||
mask = mask.float().to(device)
|
||||
|
||||
contrast_count = features.shape[1]
|
||||
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
|
||||
if self.contrast_mode == 'one':
|
||||
anchor_feature = features[:, 0]
|
||||
anchor_count = 1
|
||||
elif self.contrast_mode == 'all':
|
||||
anchor_feature = contrast_feature
|
||||
anchor_count = contrast_count
|
||||
else:
|
||||
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
|
||||
|
||||
# compute logits
|
||||
anchor_dot_contrast = torch.div(
|
||||
torch.matmul(anchor_feature, contrast_feature.T),
|
||||
self.temperature)
|
||||
# for numerical stability
|
||||
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
|
||||
logits = anchor_dot_contrast - logits_max.detach()
|
||||
|
||||
# tile mask
|
||||
mask = mask.repeat(anchor_count, contrast_count)
|
||||
# mask-out self-contrast cases
|
||||
logits_mask = torch.scatter(
|
||||
torch.ones_like(mask),
|
||||
1,
|
||||
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
|
||||
0
|
||||
)
|
||||
mask = mask * logits_mask
|
||||
|
||||
# compute log_prob
|
||||
exp_logits = torch.exp(logits) * logits_mask
|
||||
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
|
||||
|
||||
# compute mean of log-likelihood over positive
|
||||
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
|
||||
|
||||
# loss
|
||||
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
|
||||
loss = loss.view(anchor_count, batch_size).mean()
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class SupConLoss1View(nn.Module):
|
||||
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
|
||||
It also supports the unsupervised contrastive loss in SimCLR"""
|
||||
def __init__(self, temperature=0.07, base_temperature=0.07):
|
||||
super(SupConLoss1View, self).__init__()
|
||||
self.temperature = temperature
|
||||
self.base_temperature = base_temperature
|
||||
|
||||
def forward(self, features, labels):
|
||||
"""Compute loss for model. If both `labels` and `mask` are None,
|
||||
it degenerates to SimCLR unsupervised loss:
|
||||
https://arxiv.org/pdf/2002.05709.pdf
|
||||
|
||||
Args:
|
||||
features: hidden vector of shape [bsz, ndim].
|
||||
labels: ground truth of shape [bsz].
|
||||
Returns:
|
||||
A loss scalar.
|
||||
"""
|
||||
device = (torch.device('cuda')
|
||||
if features.is_cuda
|
||||
else torch.device('cpu'))
|
||||
|
||||
if len(features.shape) != 2:
|
||||
raise ValueError('`features` needs to be [bsz, ndim]')
|
||||
|
||||
batch_size = features.shape[0]
|
||||
labels = labels.contiguous().view(-1, 1)
|
||||
if labels.shape[0] != batch_size:
|
||||
raise ValueError('Num of labels does not match num of features')
|
||||
mask = torch.eq(labels, labels.T).float().to(device)
|
||||
|
||||
cross = torch.matmul(features, features.T)
|
||||
|
||||
upper_diag = torch.triu_indices(batch_size,batch_size,+1)
|
||||
cross_upper = cross[upper_diag[0], upper_diag[1]]
|
||||
mask_upper = mask[upper_diag[0], upper_diag[1]]
|
||||
pos = mask_upper.sum()
|
||||
# weight = torch.from_numpy(np.asarray([1-pos, pos], dtype=float)).to(device)
|
||||
return torch.nn.functional.binary_cross_entropy_with_logits(cross_upper, mask_upper)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# compute logits
|
||||
anchor_dot_contrast = torch.div(torch.matmul(features, features.T),self.temperature)
|
||||
# for numerical stability
|
||||
# logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
|
||||
# logits = anchor_dot_contrast - logits_max.detach()
|
||||
logits = anchor_dot_contrast
|
||||
|
||||
# mask-out self-contrast cases
|
||||
# logits_mask = torch.scatter(
|
||||
# torch.ones_like(mask),
|
||||
# 1,
|
||||
# torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
|
||||
# 0
|
||||
# )
|
||||
# mask = mask * logits_mask
|
||||
logits_mask = torch.ones_like(mask)
|
||||
logits_mask.fill_diagonal_(0)
|
||||
mask.fill_diagonal_(0)
|
||||
|
||||
# compute log_prob
|
||||
exp_logits = torch.exp(logits) * logits_mask
|
||||
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
|
||||
|
||||
# compute mean of log-likelihood over positive
|
||||
div = mask.sum(1)
|
||||
div=torch.clamp(div, min=1)
|
||||
mean_log_prob_pos = (mask * log_prob).sum(1) / div
|
||||
|
||||
# loss
|
||||
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
|
||||
# loss = loss.view(anchor_count, batch_size).mean()
|
||||
loss = loss.view(-1, batch_size).mean()
|
||||
|
||||
return loss
|
Loading…
Reference in New Issue