implemented method to compute WCE only for well represented classes;
refactored MLE class in order to support WCE, standard embeddings and combinations; sketched out NN implementation for WE compositionality; still TODO SIF embeddings;
This commit is contained in:
parent
0e66fbf197
commit
53198a7e2c
|
|
@ -6,7 +6,7 @@ from optparse import OptionParser
|
||||||
from util.file import exists
|
from util.file import exists
|
||||||
from util.results import PolylingualClassificationResults
|
from util.results import PolylingualClassificationResults
|
||||||
from sklearn.svm import SVC
|
from sklearn.svm import SVC
|
||||||
|
from util.util import get_learner, get_params
|
||||||
|
|
||||||
parser = OptionParser()
|
parser = OptionParser()
|
||||||
|
|
||||||
|
|
@ -115,7 +115,7 @@ if __name__ == '__main__':
|
||||||
config = {'unsupervised': True,
|
config = {'unsupervised': True,
|
||||||
'supervised': True,
|
'supervised': True,
|
||||||
'we_type': op.we_type}
|
'we_type': op.we_type}
|
||||||
_config_id = 'M_and_F'
|
_config_id = 'M+F'
|
||||||
|
|
||||||
config['reduction'] = 'PCA'
|
config['reduction'] = 'PCA'
|
||||||
config['max_label_space'] = op.max_labels_S
|
config['max_label_space'] = op.max_labels_S
|
||||||
|
|
@ -125,32 +125,6 @@ if __name__ == '__main__':
|
||||||
|
|
||||||
result_id = dataset_file + 'PolyEmbedd_andrea_' + _config_id + ('_optimC' if op.optimc else '')
|
result_id = dataset_file + 'PolyEmbedd_andrea_' + _config_id + ('_optimC' if op.optimc else '')
|
||||||
|
|
||||||
PLE_test = True
|
|
||||||
if PLE_test:
|
|
||||||
ple = PolylingualEmbeddingsClassifier(wordembeddings_path='/home/andreapdr/CLESA/',
|
|
||||||
config = config,
|
|
||||||
learner=get_learner(calibrate=False),
|
|
||||||
c_parameters=get_params(dense=False),
|
|
||||||
n_jobs=op.n_jobs)
|
|
||||||
|
|
||||||
print('# Fitting ...')
|
|
||||||
ple.fit(lXtr, lytr)
|
|
||||||
|
|
||||||
print('# Evaluating ...')
|
|
||||||
ple_eval = evaluate_method(ple, lXte, lyte)
|
|
||||||
|
|
||||||
metrics = []
|
|
||||||
for lang in lXte.keys():
|
|
||||||
macrof1, microf1, macrok, microk = ple_eval[lang]
|
|
||||||
metrics.append([macrof1, microf1, macrok, microk])
|
|
||||||
print('Lang %s: macro-F1=%.3f micro-F1=%.3f' % (lang, macrof1, microf1))
|
|
||||||
results.add_row('MLE', 'svm', 'no', config['we_type'],
|
|
||||||
'no','no', op.optimc, op.dataset.split('/')[-1], ple.time,
|
|
||||||
lang, macrof1, microf1, macrok, microk, '')
|
|
||||||
print('Averages: MF1, mF1, MK, mK', np.mean(np.array(metrics), axis=0))
|
|
||||||
exit()
|
|
||||||
|
|
||||||
|
|
||||||
print(f'### PolyEmbedd_andrea_{_config_id}\n')
|
print(f'### PolyEmbedd_andrea_{_config_id}\n')
|
||||||
classifier = AndreaCLF(we_path=op.we_path,
|
classifier = AndreaCLF(we_path=op.we_path,
|
||||||
config=config,
|
config=config,
|
||||||
|
|
@ -174,5 +148,5 @@ if __name__ == '__main__':
|
||||||
results.add_row('PolyEmbed_andrea', 'svm', _config_id, config['we_type'],
|
results.add_row('PolyEmbed_andrea', 'svm', _config_id, config['we_type'],
|
||||||
(config['max_label_space'], classifier.best_components),
|
(config['max_label_space'], classifier.best_components),
|
||||||
config['dim_reduction_unsupervised'], op.optimc, op.dataset.split('/')[-1], classifier.time,
|
config['dim_reduction_unsupervised'], op.optimc, op.dataset.split('/')[-1], classifier.time,
|
||||||
lang, macrof1, microf1, macrok, microk, 'min_prevalence = 0')
|
lang, macrof1, microf1, macrok, microk, '')
|
||||||
print('Averages: MF1, mF1, MK, mK', np.mean(np.array(metrics), axis=0))
|
print('Averages: MF1, mF1, MK, mK', np.mean(np.array(metrics), axis=0))
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,128 @@
|
||||||
|
import os
|
||||||
|
from dataset_builder import MultilingualDataset
|
||||||
|
from learning.learners import *
|
||||||
|
from util.evaluation import *
|
||||||
|
from optparse import OptionParser
|
||||||
|
from util.file import exists
|
||||||
|
from util.results import PolylingualClassificationResults
|
||||||
|
from util.util import get_learner, get_params
|
||||||
|
|
||||||
|
parser = OptionParser()
|
||||||
|
|
||||||
|
parser.add_option("-d", "--dataset", dest="dataset",
|
||||||
|
help="Path to the multilingual dataset processed and stored in .pickle format",
|
||||||
|
default="/home/moreo/CLESA/rcv2/rcv1-2_doclist_trByLang1000_teByLang1000_processed_run0.pickle")
|
||||||
|
|
||||||
|
parser.add_option("-o", "--output", dest="output",
|
||||||
|
help="Result file", type=str, default='./results/results.csv')
|
||||||
|
|
||||||
|
parser.add_option("-e", "--mode-embed", dest="mode_embed",
|
||||||
|
help="Set the embedding to be used [none, unsupervised, supervised, both]", type=str, default='none')
|
||||||
|
|
||||||
|
parser.add_option("-w", "--we-path", dest="we_path",
|
||||||
|
help="Path to the polylingual word embeddings", default='/home/andreapdr/CLESA/')
|
||||||
|
|
||||||
|
parser.add_option('-t', "--we-type", dest="we_type", help="Aligned embeddings to use [FastText, MUSE]", type=str,
|
||||||
|
default='MUSE')
|
||||||
|
|
||||||
|
parser.add_option("-s", "--set_c", dest="set_c",type=float,
|
||||||
|
help="Set the C parameter", default=1)
|
||||||
|
|
||||||
|
parser.add_option("-c", "--optimc", dest="optimc", action='store_true',
|
||||||
|
help="Optimize hyperparameters", default=False)
|
||||||
|
|
||||||
|
parser.add_option("-j", "--n_jobs", dest="n_jobs",type=int,
|
||||||
|
help="Number of parallel jobs (default is -1, all)", default=-1)
|
||||||
|
|
||||||
|
parser.add_option("-p", "--pca", dest="max_labels_S", type=int,
|
||||||
|
help="If smaller than number of target classes, PCA will be applied to supervised matrix. "
|
||||||
|
"If set to 0 it will automatically search for the best number of components. "
|
||||||
|
"If set to -1 it will apply PCA to the vstacked supervised matrix (PCA dim set to 50 atm)",
|
||||||
|
default=300)
|
||||||
|
|
||||||
|
parser.add_option("-u", "--upca", dest="max_labels_U", type=int,
|
||||||
|
help="If smaller than Unsupervised Dimension, PCA will be applied to unsupervised matrix."
|
||||||
|
" If set to 0 it will automatically search for the best number of components", default=300)
|
||||||
|
|
||||||
|
parser.add_option("-l", dest="lang", type=str)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
(op, args) = parser.parse_args()
|
||||||
|
|
||||||
|
assert exists(op.dataset), 'Unable to find file '+str(op.dataset)
|
||||||
|
assert not (op.set_c != 1. and op.optimc), 'Parameter C cannot be defined along with optim_c option'
|
||||||
|
|
||||||
|
dataset_file = os.path.basename(op.dataset)
|
||||||
|
|
||||||
|
results = PolylingualClassificationResults('./results/PLE_results.csv')
|
||||||
|
|
||||||
|
data = MultilingualDataset.load(op.dataset)
|
||||||
|
data.show_dimensions()
|
||||||
|
|
||||||
|
# data.set_view(languages=['en','it', 'pt', 'sv'], categories=list(range(10)))
|
||||||
|
# data.set_view(languages=[op.lang])
|
||||||
|
# data.set_view(categories=list(range(10)))
|
||||||
|
lXtr, lytr = data.training()
|
||||||
|
lXte, lyte = data.test()
|
||||||
|
|
||||||
|
if op.set_c != -1:
|
||||||
|
meta_parameters = None
|
||||||
|
else:
|
||||||
|
meta_parameters = [{'C': [1e3, 1e2, 1e1, 1, 1e-1]}]
|
||||||
|
|
||||||
|
# Embeddings and WCE config
|
||||||
|
_available_mode = ['none', 'unsupervised', 'supervised', 'both']
|
||||||
|
_available_type = ['MUSE', 'FastText']
|
||||||
|
assert op.mode_embed in _available_mode, f'{op.mode_embed} not in {_available_mode}'
|
||||||
|
assert op.we_type in _available_type, f'{op.we_type} not in {_available_type}'
|
||||||
|
|
||||||
|
if op.mode_embed == 'none':
|
||||||
|
config = {'unsupervised': False,
|
||||||
|
'supervised': False,
|
||||||
|
'we_type': None}
|
||||||
|
_config_id = 'None'
|
||||||
|
elif op.mode_embed == 'unsupervised':
|
||||||
|
config = {'unsupervised': True,
|
||||||
|
'supervised': False,
|
||||||
|
'we_type': op.we_type}
|
||||||
|
_config_id = 'M'
|
||||||
|
elif op.mode_embed == 'supervised':
|
||||||
|
config = {'unsupervised': False,
|
||||||
|
'supervised': True,
|
||||||
|
'we_type': None}
|
||||||
|
_config_id = 'F'
|
||||||
|
elif op.mode_embed == 'both':
|
||||||
|
config = {'unsupervised': True,
|
||||||
|
'supervised': True,
|
||||||
|
'we_type': op.we_type}
|
||||||
|
_config_id = 'M+F'
|
||||||
|
|
||||||
|
config['reduction'] = 'PCA'
|
||||||
|
config['max_label_space'] = op.max_labels_S
|
||||||
|
config['dim_reduction_unsupervised'] = op.max_labels_U
|
||||||
|
# config['post_pca'] = op.post_pca
|
||||||
|
# config['plot_covariance_matrices'] = True
|
||||||
|
|
||||||
|
result_id = dataset_file + 'MLE_andrea' + _config_id + ('_optimC' if op.optimc else '')
|
||||||
|
|
||||||
|
ple = PolylingualEmbeddingsClassifier(wordembeddings_path='/home/andreapdr/CLESA/',
|
||||||
|
config = config,
|
||||||
|
learner=get_learner(calibrate=False),
|
||||||
|
c_parameters=get_params(dense=False),
|
||||||
|
n_jobs=op.n_jobs)
|
||||||
|
|
||||||
|
print('# Fitting ...')
|
||||||
|
ple.fit(lXtr, lytr)
|
||||||
|
|
||||||
|
print('# Evaluating ...')
|
||||||
|
ple_eval = evaluate_method(ple, lXte, lyte)
|
||||||
|
|
||||||
|
metrics = []
|
||||||
|
for lang in lXte.keys():
|
||||||
|
macrof1, microf1, macrok, microk = ple_eval[lang]
|
||||||
|
metrics.append([macrof1, microf1, macrok, microk])
|
||||||
|
print('Lang %s: macro-F1=%.3f micro-F1=%.3f' % (lang, macrof1, microf1))
|
||||||
|
results.add_row('MLE', 'svm', _config_id, config['we_type'],
|
||||||
|
'no','no', op.optimc, op.dataset.split('/')[-1], ple.time,
|
||||||
|
lang, macrof1, microf1, macrok, microk, '')
|
||||||
|
print('Averages: MF1, mF1, MK, mK', np.mean(np.array(metrics), axis=0))
|
||||||
|
|
@ -0,0 +1,92 @@
|
||||||
|
from optparse import OptionParser
|
||||||
|
from util.results import PolylingualClassificationResults
|
||||||
|
from dataset_builder import MultilingualDataset
|
||||||
|
from keras.preprocessing.text import Tokenizer
|
||||||
|
from learning.learners import MonolingualNetSvm
|
||||||
|
from sklearn.svm import SVC
|
||||||
|
import pickle
|
||||||
|
|
||||||
|
parser = OptionParser()
|
||||||
|
|
||||||
|
parser.add_option("-d", "--dataset", dest="dataset",
|
||||||
|
help="Path to the multilingual dataset processed and stored in .pickle format",
|
||||||
|
default="/home/moreo/CLESA/rcv2/rcv1-2_doclist_trByLang1000_teByLang1000_processed_run0.pickle")
|
||||||
|
|
||||||
|
parser.add_option("-c", "--optimc", dest="optimc", action='store_true',
|
||||||
|
help="Optimize hyperparameters", default=False)
|
||||||
|
|
||||||
|
parser.add_option("-s", "--set_c", dest="set_c",type=float,
|
||||||
|
help="Set the C parameter", default=1)
|
||||||
|
|
||||||
|
(op, args) = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
###################################################################################################################
|
||||||
|
|
||||||
|
def get_learner(calibrate=False, kernel='linear'):
|
||||||
|
return SVC(kernel=kernel, probability=calibrate, cache_size=1000, C=op.set_c, random_state=1, class_weight='balanced', gamma='auto')
|
||||||
|
|
||||||
|
|
||||||
|
def get_params(dense=False):
|
||||||
|
if not op.optimc:
|
||||||
|
return None
|
||||||
|
c_range = [1e4, 1e3, 1e2, 1e1, 1, 1e-1]
|
||||||
|
kernel = 'rbf' if dense else 'linear'
|
||||||
|
return [{'kernel': [kernel], 'C': c_range, 'gamma':['auto']}]
|
||||||
|
|
||||||
|
|
||||||
|
# PREPROCESS TEXT AND SAVE IT ... both for SVM and NN
|
||||||
|
def preprocess_data(lXtr, lXte, lytr, lyte):
|
||||||
|
tokenized_tr = dict()
|
||||||
|
tokenized_te = dict()
|
||||||
|
for lang in lXtr.keys():
|
||||||
|
alltexts = ' '.join(lXtr[lang])
|
||||||
|
tokenizer = Tokenizer()
|
||||||
|
tokenizer.fit_on_texts(alltexts.split(' '))
|
||||||
|
tokenizer.oov_token = len(tokenizer.word_index)+1
|
||||||
|
# dumping train set
|
||||||
|
sequences_tr = tokenizer.texts_to_sequences(lXtr[lang])
|
||||||
|
tokenized_tr[lang] = (tokenizer.word_index, sequences_tr, lytr[lang])
|
||||||
|
# dumping test set
|
||||||
|
sequences_te = tokenizer.texts_to_sequences(lXte[lang])
|
||||||
|
tokenized_te[lang] = (tokenizer.word_index, sequences_te, lyte[lang])
|
||||||
|
|
||||||
|
with open('/home/andreapdr/CLESA/preprocessed_dataset_nn/rcv1-2_train.pickle', 'wb') as f:
|
||||||
|
pickle.dump(tokenized_tr, f)
|
||||||
|
|
||||||
|
with open('/home/andreapdr/CLESA/preprocessed_dataset_nn/rcv1-2_test.pickle', 'wb') as f:
|
||||||
|
pickle.dump(tokenized_tr, f)
|
||||||
|
|
||||||
|
print('Successfully dumped data')
|
||||||
|
|
||||||
|
# def load_preprocessed():
|
||||||
|
# with open('/home/andreapdr/CLESA/preprocessed_dataset_nn/rcv1-2_train.pickle', 'rb') as f:
|
||||||
|
# return pickle.load(f)
|
||||||
|
#
|
||||||
|
# def build_embedding_matrix(lang, word_index):
|
||||||
|
# type = 'MUSE'
|
||||||
|
# path = '/home/andreapdr/CLESA/'
|
||||||
|
# MUSE = EmbeddingsAligned(type, path, lang, word_index.keys())
|
||||||
|
# return MUSE
|
||||||
|
|
||||||
|
|
||||||
|
########## MAIN #################################################################################################
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
results = PolylingualClassificationResults('./results/NN_FPEC_results.csv')
|
||||||
|
data = MultilingualDataset.load(op.dataset)
|
||||||
|
lXtr, lytr = data.training()
|
||||||
|
lXte, lyte = data.test()
|
||||||
|
|
||||||
|
if op.set_c != -1:
|
||||||
|
meta_parameters = None
|
||||||
|
else:
|
||||||
|
meta_parameters = [{'C': [1e3, 1e2, 1e1, 1, 1e-1]}]
|
||||||
|
|
||||||
|
test_architecture = MonolingualNetSvm(lXtr,
|
||||||
|
lytr,
|
||||||
|
first_tier_learner=get_learner(calibrate=True),
|
||||||
|
first_tier_parameters=None,
|
||||||
|
n_jobs=1)
|
||||||
|
|
||||||
|
test_architecture.fit()
|
||||||
|
|
@ -3,8 +3,9 @@ import pickle
|
||||||
from torchtext.vocab import Vectors
|
from torchtext.vocab import Vectors
|
||||||
import torch
|
import torch
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from data.supervised import get_supervised_embeddings
|
from learning.supervised import get_supervised_embeddings
|
||||||
from util.decompositions import *
|
from util.decompositions import *
|
||||||
|
from util.SIF_embed import *
|
||||||
|
|
||||||
|
|
||||||
class PretrainedEmbeddings(ABC):
|
class PretrainedEmbeddings(ABC):
|
||||||
|
|
@ -233,7 +234,6 @@ class StorageEmbeddings:
|
||||||
print(f'# REDUCING LABELS TO min_prevalence = {min_prevalence} in order to compute WCE Matrix ...')
|
print(f'# REDUCING LABELS TO min_prevalence = {min_prevalence} in order to compute WCE Matrix ...')
|
||||||
langs = list(docs.keys())
|
langs = list(docs.keys())
|
||||||
well_repr_cats = np.logical_and.reduce([labels[lang].sum(axis=0)>min_prevalence for lang in langs])
|
well_repr_cats = np.logical_and.reduce([labels[lang].sum(axis=0)>min_prevalence for lang in langs])
|
||||||
# lY = {lY[lang][:, well_repr_cats] for lang in langs} TODO not clear
|
|
||||||
for lang in langs:
|
for lang in langs:
|
||||||
labels[lang] = labels[lang][:, well_repr_cats]
|
labels[lang] = labels[lang][:, well_repr_cats]
|
||||||
print(f'Target number reduced to: {labels[lang].shape[1]}\n')
|
print(f'Target number reduced to: {labels[lang].shape[1]}\n')
|
||||||
|
|
@ -245,15 +245,15 @@ class StorageEmbeddings:
|
||||||
nC = self.lang_S[lang].shape[1]
|
nC = self.lang_S[lang].shape[1]
|
||||||
print(f'[embedding matrix done] of shape={self.lang_S[lang].shape}\n')
|
print(f'[embedding matrix done] of shape={self.lang_S[lang].shape}\n')
|
||||||
|
|
||||||
if max_label_space == 0:
|
if max_label_space == 0: # looking for best n_components analyzing explained_variance_ratio
|
||||||
print(f'Computing optimal number of PCA components along matrices S')
|
print(f'Computing optimal number of PCA components along matrices S')
|
||||||
optimal_n = get_optimal_dim(self.lang_S, 'S')
|
optimal_n = get_optimal_dim(self.lang_S, 'S')
|
||||||
print(f'Applying PCA(n_components={optimal_n})')
|
print(f'Applying PCA(n_components={optimal_n})')
|
||||||
self.lang_S = run_pca(optimal_n, self.lang_S)
|
self.lang_S = run_pca(optimal_n, self.lang_S)
|
||||||
elif max_label_space == -1:
|
elif max_label_space == -1: # applying pca to the verticals stacked matrix of WCE embeddings
|
||||||
print(f'Computing PCA on vertical stacked WCE embeddings')
|
print(f'Computing PCA on vertical stacked WCE embeddings')
|
||||||
languages = self.lang_S.keys()
|
languages = self.lang_S.keys()
|
||||||
_temp_stack = np.vstack([self.lang_S[lang] for lang in languages])
|
_temp_stack = np.vstack([self.lang_S[lang] for lang in languages]) # stacking WCE vertically
|
||||||
stacked_pca = PCA(n_components=_temp_stack.shape[1])
|
stacked_pca = PCA(n_components=_temp_stack.shape[1])
|
||||||
stacked_pca.fit(_temp_stack)
|
stacked_pca.fit(_temp_stack)
|
||||||
best_n = None
|
best_n = None
|
||||||
|
|
@ -271,12 +271,15 @@ class StorageEmbeddings:
|
||||||
print(f'Applying PCA(n_components={i}')
|
print(f'Applying PCA(n_components={i}')
|
||||||
for lang in languages:
|
for lang in languages:
|
||||||
self.lang_S[lang] = stacked_pca.transform(self.lang_S[lang])
|
self.lang_S[lang] = stacked_pca.transform(self.lang_S[lang])
|
||||||
elif max_label_space <= nC: # also equal in order to reduce it to the same initial dimension
|
elif max_label_space <= nC: # less or equal in order to reduce it to the same initial dimension
|
||||||
print(f'Computing PCA on Supervised Matrix PCA(n_components:{max_label_space})')
|
print(f'Computing PCA on Supervised Matrix PCA(n_components:{max_label_space})')
|
||||||
self.lang_S = run_pca(max_label_space, self.lang_S)
|
self.lang_S = run_pca(max_label_space, self.lang_S)
|
||||||
|
|
||||||
return
|
return
|
||||||
|
|
||||||
|
def SIF_embeddings(self):
|
||||||
|
print('todo') # TODO
|
||||||
|
|
||||||
def _concatenate_embeddings(self, docs):
|
def _concatenate_embeddings(self, docs):
|
||||||
_r = dict()
|
_r = dict()
|
||||||
for lang in self.lang_U.keys():
|
for lang in self.lang_U.keys():
|
||||||
|
|
@ -293,6 +296,9 @@ class StorageEmbeddings:
|
||||||
def predict(self, config, docs):
|
def predict(self, config, docs):
|
||||||
if config['supervised'] and config['unsupervised']:
|
if config['supervised'] and config['unsupervised']:
|
||||||
return self._concatenate_embeddings(docs)
|
return self._concatenate_embeddings(docs)
|
||||||
|
# todo testing applying pca to hstack muse + wce
|
||||||
|
# _reduced = self._concatenate_embeddings(docs)
|
||||||
|
# return run_pca(300, _reduced)
|
||||||
elif config['supervised']:
|
elif config['supervised']:
|
||||||
_r = dict()
|
_r = dict()
|
||||||
for lang in docs.keys():
|
for lang in docs.keys():
|
||||||
|
|
@ -301,4 +307,5 @@ class StorageEmbeddings:
|
||||||
_r = dict()
|
_r = dict()
|
||||||
for lang in docs.keys():
|
for lang in docs.keys():
|
||||||
_r[lang] = docs[lang].dot(self.lang_U[lang])
|
_r[lang] = docs[lang].dot(self.lang_U[lang])
|
||||||
|
|
||||||
return _r
|
return _r
|
||||||
|
|
@ -1,6 +1,6 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import time
|
import time
|
||||||
from data.embeddings import WordEmbeddings, StorageEmbeddings
|
from learning.embeddings import WordEmbeddings, StorageEmbeddings
|
||||||
from scipy.sparse import issparse
|
from scipy.sparse import issparse
|
||||||
from sklearn.multiclass import OneVsRestClassifier
|
from sklearn.multiclass import OneVsRestClassifier
|
||||||
from sklearn.model_selection import GridSearchCV
|
from sklearn.model_selection import GridSearchCV
|
||||||
|
|
@ -9,6 +9,7 @@ from joblib import Parallel, delayed
|
||||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||||
from transformers.StandardizeTransformer import StandardizeTransformer
|
from transformers.StandardizeTransformer import StandardizeTransformer
|
||||||
from sklearn.decomposition import PCA
|
from sklearn.decomposition import PCA
|
||||||
|
from models.cnn_class import CNN_pdr
|
||||||
|
|
||||||
|
|
||||||
def _sort_if_sparse(X):
|
def _sort_if_sparse(X):
|
||||||
|
|
@ -581,3 +582,151 @@ class PolylingualEmbeddingsClassifier:
|
||||||
|
|
||||||
def best_params(self):
|
def best_params(self):
|
||||||
return self.model.best_params()
|
return self.model.best_params()
|
||||||
|
|
||||||
|
|
||||||
|
class MonolingualNetSvm:
|
||||||
|
"""
|
||||||
|
testing: funnelling with NN managing word embeddings compositionality. An ensemble of n-SVMs (n equals to the
|
||||||
|
number of training languages) is first fit on the data, generating the documents projection in the Z-space. Next,
|
||||||
|
the projection are fed to a single NN with their respective document embeddings. The documents are projected into
|
||||||
|
the embedding space while preserving their dimensionality (output dim is 300). These projection are horizonatally
|
||||||
|
concatenated with the respective projection and passed through a fC layer with sigmoid act and output dim equal
|
||||||
|
to the number of target classes.
|
||||||
|
# TODO ATM testing with only 1 language
|
||||||
|
"""
|
||||||
|
def __init__(self, lX, ly, first_tier_learner, first_tier_parameters, n_jobs):
|
||||||
|
self.lX = lX
|
||||||
|
self.ly = ly
|
||||||
|
# SVM Attributes
|
||||||
|
self.doc_projector = NaivePolylingualClassifier(first_tier_learner, first_tier_parameters,
|
||||||
|
n_jobs=n_jobs)
|
||||||
|
self.calmode = 'cal'
|
||||||
|
self.languages = []
|
||||||
|
self.lang_word2idx = dict()
|
||||||
|
self.lang_tfidf = {}
|
||||||
|
self.base_learner = 'TODO'
|
||||||
|
self.parameters = 'TODO'
|
||||||
|
# NN Attributes
|
||||||
|
self.NN = 'TODO'
|
||||||
|
|
||||||
|
|
||||||
|
def load_preprocessed(self):
|
||||||
|
"""
|
||||||
|
in order to speed up the process, documents are first tokenized in the "main". Here, tokenized docs, word_index, and
|
||||||
|
targets are loaded.
|
||||||
|
:return: dict[lang] = (word_index, tokenized_docs, targets)
|
||||||
|
"""
|
||||||
|
import pickle
|
||||||
|
with open('/home/andreapdr/CLESA/preprocessed_dataset_nn/rcv1-2_train.pickle', 'rb') as f:
|
||||||
|
return pickle.load(f)
|
||||||
|
|
||||||
|
def _build_embedding_matrix(self, lang, word_index):
|
||||||
|
"""
|
||||||
|
build embedding matrix by filtering out OOV embeddings
|
||||||
|
:param lang:
|
||||||
|
:param word_index:
|
||||||
|
:return: filtered embedding matrix
|
||||||
|
"""
|
||||||
|
from learning.embeddings import EmbeddingsAligned
|
||||||
|
type = 'MUSE'
|
||||||
|
path = '/home/andreapdr/CLESA/'
|
||||||
|
MUSE = EmbeddingsAligned(type, path, lang, word_index.keys())
|
||||||
|
return MUSE
|
||||||
|
|
||||||
|
def get_data_and_embed(self, data_dict):
|
||||||
|
from keras.preprocessing.sequence import pad_sequences
|
||||||
|
|
||||||
|
langs = data_dict.keys()
|
||||||
|
lang_embedding_matrix = dict()
|
||||||
|
nn_lXtr = dict()
|
||||||
|
nn_lytr = dict()
|
||||||
|
|
||||||
|
for lang in langs:
|
||||||
|
lang_embedding_matrix[lang] = self._build_embedding_matrix(lang, data_dict[lang][0])
|
||||||
|
nn_lXtr[lang] = pad_sequences(data_dict[lang][1], 100, padding='post')
|
||||||
|
nn_lytr[lang] = [data_dict[lang][2]]
|
||||||
|
|
||||||
|
return nn_lXtr, nn_lytr, lang_embedding_matrix
|
||||||
|
|
||||||
|
def svm_vectorize(self, lX, prediction=False):
|
||||||
|
langs = list(lX.keys())
|
||||||
|
print(f'# tfidf-vectorizing docs')
|
||||||
|
if prediction:
|
||||||
|
for lang in langs:
|
||||||
|
assert lang in self.lang_tfidf.keys(), 'no tf-idf for given language'
|
||||||
|
tfidf_vectorizer = self.lang_tfidf[lang]
|
||||||
|
lX[lang] = tfidf_vectorizer.transform(lX[lang])
|
||||||
|
return self
|
||||||
|
for lang in langs:
|
||||||
|
tfidf_vectorizer = TfidfVectorizer(sublinear_tf=True, use_idf=True)
|
||||||
|
self.languages.append(lang)
|
||||||
|
tfidf_vectorizer.fit(lX[lang])
|
||||||
|
lX[lang] = tfidf_vectorizer.transform(lX[lang])
|
||||||
|
self.lang_word2idx[lang] = tfidf_vectorizer.vocabulary_
|
||||||
|
self.lang_tfidf[lang] = tfidf_vectorizer
|
||||||
|
return lX
|
||||||
|
|
||||||
|
def _get_zspace(self, lXtr, lYtr):
|
||||||
|
print('\nfitting the projectors... {}'.format(list(lXtr.keys())))
|
||||||
|
self.doc_projector.fit(lXtr, lYtr)
|
||||||
|
|
||||||
|
print('\nprojecting the documents')
|
||||||
|
lZ = self._projection(self.doc_projector, lXtr)
|
||||||
|
|
||||||
|
return lZ, lYtr
|
||||||
|
|
||||||
|
def _projection(self, doc_projector, lX):
|
||||||
|
"""
|
||||||
|
Decides the projection function to be applied; predict_proba if the base classifiers are calibrated or
|
||||||
|
decision_function if otherwise
|
||||||
|
:param doc_projector: the document projector (a NaivePolylingualClassifier)
|
||||||
|
:param lX: {lang:matrix} to train
|
||||||
|
:return: the projection, applied with predict_proba or decision_function
|
||||||
|
"""
|
||||||
|
if self.calmode=='cal':
|
||||||
|
return doc_projector.predict_proba(lX)
|
||||||
|
else:
|
||||||
|
l_decision_scores = doc_projector.decision_function(lX)
|
||||||
|
if self.calmode=='sigmoid':
|
||||||
|
def sigmoid(x): return 1 / (1 + np.exp(-x))
|
||||||
|
for lang in l_decision_scores.keys():
|
||||||
|
l_decision_scores[lang] = sigmoid(l_decision_scores[lang])
|
||||||
|
return l_decision_scores
|
||||||
|
|
||||||
|
def fit(self):
|
||||||
|
"""
|
||||||
|
# 1. Fit SVM to generate posterior probabilities:
|
||||||
|
# 1.1 Gather documents and vectorize them as in other SVM classifiers
|
||||||
|
# 2. Fit NN
|
||||||
|
# 2.1 Gather documents and build NN dataset by indexing wrt embedding matrix
|
||||||
|
# 2.2 Fit NN first-layer to generate compositional doc embedding
|
||||||
|
# 2.3 H-stack doc-embed and posterior P
|
||||||
|
# 2.4 Feed stacked vector to output layer (sigmoid act): output Nc
|
||||||
|
# 2.5 Train it...
|
||||||
|
"""
|
||||||
|
|
||||||
|
# load pre-processed data
|
||||||
|
data_dict = self.load_preprocessed()
|
||||||
|
# build embedding matrices and neural network document training set
|
||||||
|
nn_lXtr, nn_lytr, lang_embedding_matrix = self.get_data_and_embed(data_dict)
|
||||||
|
# TF-IDF vectorzing documents for SVM classifier
|
||||||
|
svm_lX = self.svm_vectorize(self.lX)
|
||||||
|
|
||||||
|
# just testing on a smaller subset of data
|
||||||
|
test_svm_lX = dict()
|
||||||
|
test_svm_ly = dict()
|
||||||
|
test_svm_lX['it'] = svm_lX['it'][:10, :]
|
||||||
|
test_svm_ly['it'] = self.ly['it'][:10, :]
|
||||||
|
test_nn_data = nn_lXtr['it'][:10]
|
||||||
|
|
||||||
|
# projecting document into Z space by SVM
|
||||||
|
svm_Z, _ = self._get_zspace(test_svm_lX, test_svm_ly)
|
||||||
|
|
||||||
|
# initializing net and forward pass
|
||||||
|
net = CNN_pdr(73, 1, 300, len(lang_embedding_matrix['it'].vectors), 300, lang_embedding_matrix['it'].vectors)
|
||||||
|
out = net.forward(test_nn_data, svm_Z['it'])
|
||||||
|
|
||||||
|
print('TODO')
|
||||||
|
|
||||||
|
def net(self):
|
||||||
|
pass
|
||||||
|
|
@ -0,0 +1,42 @@
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
import torch
|
||||||
|
|
||||||
|
class CNN_pdr(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, output_size, out_channels, compositional_dim, vocab_size, emb_dim, embeddings=None, drop_embedding_range=None,
|
||||||
|
drop_embedding_prop=0, drop_prob=0.5):
|
||||||
|
super(CNN_pdr, self).__init__()
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.emb_dim = emb_dim
|
||||||
|
self.embeddings = torch.FloatTensor(embeddings)
|
||||||
|
self.embedding_layer = nn.Embedding(vocab_size, emb_dim, _weight=self.embeddings)
|
||||||
|
self.kernel_heights = kernel_heights=[3,5,7]
|
||||||
|
self.stride = 1
|
||||||
|
self.padding = 0
|
||||||
|
self.drop_embedding_range = drop_embedding_range
|
||||||
|
self.drop_embedding_prop = drop_embedding_prop
|
||||||
|
assert 0 <= drop_embedding_prop <= 1, 'drop_embedding_prop: wrong range'
|
||||||
|
self.nC = 73
|
||||||
|
|
||||||
|
self.conv1 = nn.Conv2d(1, compositional_dim, (self.kernel_heights[0], self.emb_dim), self.stride, self.padding)
|
||||||
|
self.dropout = nn.Dropout(drop_prob)
|
||||||
|
self.label = nn.Linear(len(kernel_heights) * out_channels, output_size)
|
||||||
|
self.fC = nn.Linear(compositional_dim + self.nC, self.nC)
|
||||||
|
|
||||||
|
|
||||||
|
def forward(self, x, svm_output):
|
||||||
|
x = torch.LongTensor(x)
|
||||||
|
svm_output = torch.FloatTensor(svm_output)
|
||||||
|
x = self.embedding_layer(x)
|
||||||
|
x = self.conv1(x.unsqueeze(1))
|
||||||
|
x = F.relu(x.squeeze(3))
|
||||||
|
x = F.max_pool1d(x, x.size()[2]).squeeze(2)
|
||||||
|
x = torch.cat((x, svm_output), 1)
|
||||||
|
x = F.sigmoid(self.fC(x))
|
||||||
|
return x #.detach().numpy()
|
||||||
|
|
||||||
|
# logits = self.label(x)
|
||||||
|
# return logits
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -2,6 +2,6 @@ import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
df = pd.read_csv("/home/andreapdr/funneling_pdr/src/results/results.csv", delimiter='\t')
|
df = pd.read_csv("/home/andreapdr/funneling_pdr/src/results/results.csv", delimiter='\t')
|
||||||
pivot = pd.pivot_table(df, values=['time', 'macrof1', 'microf1', 'macrok', 'microk'], index=['embed'], aggfunc=[np.mean, np.std])
|
pivot = pd.pivot_table(df, values=['time', 'macrof1', 'microf1', 'macrok', 'microk'], index=['method', 'embed'], aggfunc=[np.mean, np.std])
|
||||||
print(pivot)
|
print(pivot)
|
||||||
print('Finished ...')
|
print('Finished ...')
|
||||||
|
|
@ -0,0 +1,56 @@
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.decomposition import TruncatedSVD
|
||||||
|
|
||||||
|
def get_weighted_average(We, x, w):
|
||||||
|
"""
|
||||||
|
Compute the weighted average vectors
|
||||||
|
:param We: We[i,:] is the vector for word i
|
||||||
|
:param x: x[i, :] are the indices of the words in sentence i
|
||||||
|
:param w: w[i, :] are the weights for the words in sentence i
|
||||||
|
:return: emb[i, :] are the weighted average vector for sentence i
|
||||||
|
"""
|
||||||
|
n_samples = x.shape[0]
|
||||||
|
emb = np.zeros((n_samples, We.shape[1]))
|
||||||
|
for i in range(n_samples):
|
||||||
|
emb[i,:] = w[i,:].dot(We[x[i,:],:]) / np.count_nonzero(w[i,:])
|
||||||
|
return emb
|
||||||
|
|
||||||
|
def compute_pc(X,npc=1):
|
||||||
|
"""
|
||||||
|
Compute the principal components. DO NOT MAKE THE DATA ZERO MEAN!
|
||||||
|
:param X: X[i,:] is a data point
|
||||||
|
:param npc: number of principal components to remove
|
||||||
|
:return: component_[i,:] is the i-th pc
|
||||||
|
"""
|
||||||
|
svd = TruncatedSVD(n_components=npc, n_iter=7, random_state=0)
|
||||||
|
svd.fit(X)
|
||||||
|
return svd.components_
|
||||||
|
|
||||||
|
def remove_pc(X, npc=1):
|
||||||
|
"""
|
||||||
|
Remove the projection on the principal components
|
||||||
|
:param X: X[i,:] is a data point
|
||||||
|
:param npc: number of principal components to remove
|
||||||
|
:return: XX[i, :] is the data point after removing its projection
|
||||||
|
"""
|
||||||
|
pc = compute_pc(X, npc)
|
||||||
|
if npc==1:
|
||||||
|
XX = X - X.dot(pc.transpose()) * pc
|
||||||
|
else:
|
||||||
|
XX = X - X.dot(pc.transpose()).dot(pc)
|
||||||
|
return XX
|
||||||
|
|
||||||
|
|
||||||
|
def SIF_embedding(We, x, w, params):
|
||||||
|
"""
|
||||||
|
Compute the scores between pairs of sentences using weighted average + removing the projection on the first principal component
|
||||||
|
:param We: We[i,:] is the vector for word i
|
||||||
|
:param x: x[i, :] are the indices of the words in the i-th sentence
|
||||||
|
:param w: w[i, :] are the weights for the words in the i-th sentence
|
||||||
|
:param params.rmpc: if >0, remove the projections of the sentence embeddings to their first principal component
|
||||||
|
:return: emb, emb[i, :] is the embedding for sentence i
|
||||||
|
"""
|
||||||
|
emb = get_weighted_average(We, x, w)
|
||||||
|
if params.rmpc > 0:
|
||||||
|
emb = remove_pc(emb, params.rmpc)
|
||||||
|
return emb
|
||||||
|
|
@ -1,2 +1,15 @@
|
||||||
|
from sklearn.svm import SVC
|
||||||
|
|
||||||
def fill_missing_classes(lXtr, lytr):
|
def fill_missing_classes(lXtr, lytr):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
def get_learner(calibrate=False, kernel='linear'):
|
||||||
|
return SVC(kernel=kernel, probability=calibrate, cache_size=1000, C=op.set_c, random_state=1, class_weight='balanced', gamma='auto')
|
||||||
|
|
||||||
|
|
||||||
|
def get_params(dense=False):
|
||||||
|
if not op.optimc:
|
||||||
|
return None
|
||||||
|
c_range = [1e4, 1e3, 1e2, 1e1, 1, 1e-1]
|
||||||
|
kernel = 'rbf' if dense else 'linear'
|
||||||
|
return [{'kernel': [kernel], 'C': c_range, 'gamma':['auto']}]
|
||||||
Loading…
Reference in New Issue