1
0
Fork 0
QuaPy/examples/lequa2022_experiments_recal...

64 lines
2.7 KiB
Python
Raw Normal View History

2023-01-24 09:48:21 +01:00
import numpy as np
from abstention.calibration import NoBiasVectorScaling, VectorScaling, TempScaling
from sklearn.calibration import CalibratedClassifierCV
from sklearn.linear_model import LogisticRegression
import quapy as qp
import quapy.functional as F
from classification.calibration import RecalibratedProbabilisticClassifierBase, NBVSCalibration, \
2023-01-24 09:48:21 +01:00
BCTSCalibration
from data.datasets import LEQUA2022_SAMPLE_SIZE, fetch_lequa2022
from evaluation import evaluation_report
from method.aggregative import EMQ
from model_selection import GridSearchQ
import pandas as pd
for task in ['T1A', 'T1B']:
# calibration = TempScaling(verbose=False, bias_positions='all')
qp.environ['SAMPLE_SIZE'] = LEQUA2022_SAMPLE_SIZE[task]
training, val_generator, test_generator = fetch_lequa2022(task=task)
# define the quantifier
# learner = BCTSCalibration(LogisticRegression(), n_jobs=-1)
# learner = CalibratedClassifierCV(LogisticRegression())
learner = LogisticRegression()
quantifier = EMQ(classifier=learner)
2023-01-24 09:48:21 +01:00
# model selection
param_grid = {
'classifier__C': np.logspace(-3, 3, 7),
'classifier__class_weight': ['balanced', None],
'recalib': ['platt', 'ts', 'vs', 'nbvs', 'bcts', None],
'exact_train_prev': [False, True]
}
2023-01-24 09:48:21 +01:00
model_selection = GridSearchQ(quantifier, param_grid, protocol=val_generator, error='mrae', n_jobs=-1, refit=False, verbose=True)
quantifier = model_selection.fit(training)
# evaluation
report = evaluation_report(quantifier, protocol=test_generator, error_metrics=['mae', 'mrae', 'mkld'], verbose=True)
# import os
# os.makedirs(f'./out', exist_ok=True)
# with open(f'./out/EMQ_{calib}_{task}.txt', 'wt') as foo:
# estim_prev = report['estim-prev'].values
# nclasses = len(estim_prev[0])
# foo.write(f'id,'+','.join([str(x) for x in range(nclasses)])+'\n')
# for id, prev in enumerate(estim_prev):
# foo.write(f'{id},'+','.join([f'{p:.5f}' for p in prev])+'\n')
#
# #os.makedirs(f'./errors/{task}', exist_ok=True)
# with open(f'./out/EMQ_{calib}_{task}_errors.txt', 'wt') as foo:
# maes, mraes = report['mae'].values, report['mrae'].values
# foo.write(f'id,AE,RAE\n')
# for id, (ae_i, rae_i) in enumerate(zip(maes, mraes)):
# foo.write(f'{id},{ae_i:.5f},{rae_i:.5f}\n')
2023-01-24 09:48:21 +01:00
# printing results
pd.set_option('display.expand_frame_repr', False)
report['estim-prev'] = report['estim-prev'].map(F.strprev)
print(report)
print('Averaged values:')
print(report.mean())