1
0
Fork 0
QuaPy/quapy/method/aggregative.py

1286 lines
62 KiB
Python
Raw Normal View History

2023-11-12 13:04:19 +01:00
from abc import ABC, abstractmethod
2021-01-15 18:32:32 +01:00
from copy import deepcopy
2022-07-11 12:21:49 +02:00
from typing import Callable, Union
2021-01-15 18:32:32 +01:00
import numpy as np
from scipy import optimize
2023-02-14 19:15:59 +01:00
from sklearn.base import BaseEstimator
2021-01-15 18:32:32 +01:00
from sklearn.calibration import CalibratedClassifierCV
from sklearn.metrics import confusion_matrix
2023-02-14 19:15:59 +01:00
from sklearn.model_selection import cross_val_predict
2023-11-13 12:42:57 +01:00
2021-01-18 10:53:22 +01:00
import quapy as qp
2021-01-15 18:32:32 +01:00
import quapy.functional as F
2023-11-13 14:45:34 +01:00
from quapy.functional import get_divergence
2023-02-14 19:15:59 +01:00
from quapy.classification.calibration import NBVSCalibration, BCTSCalibration, TSCalibration, VSCalibration
2021-01-15 18:32:32 +01:00
from quapy.classification.svmperf import SVMperf
from quapy.data import LabelledCollection
2023-02-09 19:39:16 +01:00
from quapy.method.base import BaseQuantifier, BinaryQuantifier, OneVsAllGeneric
2021-01-15 18:32:32 +01:00
2020-12-03 18:12:28 +01:00
# Abstract classes
# ------------------------------------
2023-11-13 12:42:57 +01:00
class AggregativeQuantifier(BaseQuantifier, ABC):
2020-12-03 18:12:28 +01:00
"""
Abstract class for quantification methods that base their estimations on the aggregation of classification
2023-11-12 13:04:19 +01:00
results. Aggregative quantifiers implement a pipeline that consists of generating classification predictions
and aggregating them. For this reason, the training phase is implemented by :meth:`classification_fit` followed
by :meth:`aggregation_fit`, while the testing phase is implemented by :meth:`classify` followed by
:meth:`aggregate`. Subclasses of this abstract class must provide implementations for these methods.
Aggregative quantifiers also maintain a :attr:`classifier` attribute.
The method :meth:`fit` comes with a default implementation based on :meth:`classification_fit`
and :meth:`aggregation_fit`.
The method :meth:`quantify` comes with a default implementation based on :meth:`classify`
and :meth:`aggregate`.
2020-12-03 18:12:28 +01:00
"""
def fit(self, data: LabelledCollection, fit_classifier=True):
"""
2023-11-12 13:04:19 +01:00
Trains the aggregative quantifier. This comes down to training a classifier and an aggregation function.
:param data: a :class:`quapy.data.base.LabelledCollection` consisting of the training data
2023-11-12 13:04:19 +01:00
:param fit_classifier: whether to train the learner (default is True). Set to False if the
learner has been trained outside the quantifier.
:return: self
"""
classif_predictions = self.classifier_fit_predict(data, fit_classifier)
2023-11-12 13:04:19 +01:00
self.aggregation_fit(classif_predictions)
return self
def classifier_fit_predict(self, data: LabelledCollection, fit_classifier=True, predict_on=None):
2023-11-12 13:04:19 +01:00
"""
Trains the classifier if requested (`fit_classifier=True`) and generate the necessary predictions to
train the aggregation function.
:param data: a :class:`quapy.data.base.LabelledCollection` consisting of the training data
:param fit_classifier: whether to train the learner (default is True). Set to False if the
learner has been trained outside the quantifier.
:param predict_on: specifies the set on which predictions need to be issued. This parameter can
be specified as None (default) to indicate no prediction is needed; a float in (0, 1) to
indicate the proportion of instances to be used for predictions (the remainder is used for
training); an integer >1 to indicate that the predictions must be generated via k-fold
cross-validation, using this integer as k; or the data sample itself on which to generate
the predictions.
"""
assert isinstance(fit_classifier, bool), 'unexpected type for "fit_classifier", must be boolean'
2023-11-13 12:42:57 +01:00
print(type(self))
2023-11-13 14:45:34 +01:00
self.__check_classifier(adapt_if_necessary=(self._classifier_method()=='predict_proba'))
if predict_on is None:
if fit_classifier:
self.classifier.fit(*data.Xy)
predictions = None
elif isinstance(predict_on, float):
if fit_classifier:
if not (0. < predict_on < 1.):
raise ValueError(f'proportion {predict_on=} out of range, must be in (0,1)')
train, val = data.split_stratified(train_prop=(1 - predict_on))
self.classifier.fit(*train.Xy)
predictions = (self.classify(val.X), val.y)
else:
raise ValueError(f'wrong type for predict_on: since fit_classifier=False, '
f'the set on which predictions have to be issued must be '
f'explicitly indicated')
elif isinstance(predict_on, LabelledCollection):
if fit_classifier:
self.classifier.fit(*data.Xy)
predictions = (self.classify(predict_on.X), predict_on.y)
elif isinstance(predict_on, int):
if fit_classifier:
if not predict_on > 1:
raise ValueError(f'invalid value {predict_on} in fit. '
f'Specify a integer >1 for kFCV estimation.')
predictions = cross_val_predict(
2023-11-13 14:45:34 +01:00
classifier, *data.Xy, cv=predict_on, n_jobs=self.n_jobs, method=self._classifier_method())
self.classifier.fit(*data.Xy)
else:
raise ValueError(f'wrong type for predict_on: since fit_classifier=False, '
f'the set on which predictions have to be issued must be '
f'explicitly indicated')
else:
raise ValueError(
f'error: param "predict_on" ({type(predict_on)}) not understood; '
f'use either a float indicating the split proportion, or a '
f'tuple (X,y) indicating the validation partition')
return predictions
2023-11-12 13:04:19 +01:00
@abstractmethod
def aggregation_fit(self, classif_predictions: LabelledCollection):
2023-11-12 13:04:19 +01:00
"""
Trains the aggregation function.
:param classif_predictions: typically an `ndarray` containing the label predictions, but could be a
tuple containing any information needed for fitting the aggregation function
"""
...
2020-12-03 18:12:28 +01:00
@property
def classifier(self):
"""
Gives access to the classifier
:return: the classifier (typically an sklearn's Estimator)
"""
return self.classifier_
@classifier.setter
def classifier(self, classifier):
"""
Setter for the classifier
2021-12-15 15:27:43 +01:00
:param classifier: the classifier
"""
self.classifier_ = classifier
def classify(self, instances):
"""
2022-05-25 19:14:33 +02:00
Provides the label predictions for the given instances. The predictions should respect the format expected by
:meth:`aggregate`, i.e., posterior probabilities for probabilistic quantifiers, or crisp predictions for
non-probabilistic quantifiers
:param instances: array-like
:return: np.ndarray of shape `(n_instances,)` with label predictions
"""
return self.classifier.predict(instances)
2020-12-03 18:12:28 +01:00
2023-11-13 14:45:34 +01:00
def _classifier_method(self):
2023-11-13 12:42:57 +01:00
print('using predict')
return 'predict'
def __check_classifier(self, adapt_if_necessary=False):
2023-11-13 14:45:34 +01:00
assert hasattr(self.classifier, self._classifier_method())
def quantify(self, instances):
"""
Generate class prevalence estimates for the sample's instances by aggregating the label predictions generated
by the classifier.
:param instances: array-like
:return: `np.ndarray` of shape `(n_classes)` with class prevalence estimates.
"""
classif_predictions = self.classify(instances)
return self.aggregate(classif_predictions)
@abstractmethod
def aggregate(self, classif_predictions: np.ndarray):
"""
Implements the aggregation of label predictions.
:param classif_predictions: `np.ndarray` of label predictions
:return: `np.ndarray` of shape `(n_classes,)` with class prevalence estimates.
"""
...
@property
def classes_(self):
"""
Class labels, in the same order in which class prevalence values are to be computed.
This default implementation actually returns the class labels of the learner.
:return: array-like
"""
return self.classifier.classes_
2020-12-03 18:12:28 +01:00
2023-11-12 13:04:19 +01:00
class AggregativeProbabilisticQuantifier(AggregativeQuantifier, ABC):
2020-12-03 18:12:28 +01:00
"""
Abstract class for quantification methods that base their estimations on the aggregation of posterior probabilities
as returned by a probabilistic classifier. Aggregative Probabilistic Quantifiers thus extend Aggregative
2020-12-15 15:20:35 +01:00
Quantifiers by implementing a _posterior_probabilities_ method returning values in [0,1] -- the posterior
2020-12-03 18:12:28 +01:00
probabilities.
"""
2022-05-25 19:14:33 +02:00
def classify(self, instances):
return self.classifier.predict_proba(instances)
2020-12-03 18:12:28 +01:00
2023-11-13 14:45:34 +01:00
def _classifier_method(self):
2023-11-13 12:42:57 +01:00
print('using predict_proba')
return 'predict_proba'
def __check_classifier(self, adapt_if_necessary=False):
2023-11-13 12:42:57 +01:00
if not hasattr(self.classifier, self.__check_classifier()):
if adapt_if_necessary:
print(f'warning: The learner {self.classifier.__class__.__name__} does not seem to be '
f'probabilistic. The learner will be calibrated (using CalibratedClassifierCV).')
self.classifier = CalibratedClassifierCV(self.classifier, cv=5)
else:
raise AssertionError(f'error: The learner {self.classifier.__class__.__name__} does not '
f'seem to be probabilistic. The learner cannot be calibrated since '
f'fit_classifier is set to False')
2020-12-03 18:12:28 +01:00
# Methods
# ------------------------------------
2021-01-07 17:58:48 +01:00
class CC(AggregativeQuantifier):
2020-12-03 18:12:28 +01:00
"""
The most basic Quantification method. One that simply classifies all instances and counts how many have been
attributed to each of the classes in order to compute class prevalence estimates.
:param classifier: a sklearn's Estimator that generates a classifier
2020-12-03 18:12:28 +01:00
"""
def __init__(self, classifier: BaseEstimator):
self.classifier = classifier
2020-12-03 18:12:28 +01:00
def aggregation_fit(self, classif_predictions: LabelledCollection):
2023-11-12 13:04:19 +01:00
"""
Nothing to do here!
:param classif_predictions: this is actually None
"""
pass
2020-12-03 18:12:28 +01:00
def aggregate(self, classif_predictions: np.ndarray):
"""
Computes class prevalence estimates by counting the prevalence of each of the predicted labels.
:param classif_predictions: array-like with label predictions
:return: `np.ndarray` of shape `(n_classes,)` with class prevalence estimates.
"""
2021-05-05 17:12:44 +02:00
return F.prevalence_from_labels(classif_predictions, self.classes_)
2020-12-03 18:12:28 +01:00
2021-01-07 17:58:48 +01:00
class ACC(AggregativeQuantifier):
"""
`Adjusted Classify & Count <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_,
the "adjusted" variant of :class:`CC`, that corrects the predictions of CC
according to the `misclassification rates`.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
2020-12-03 18:12:28 +01:00
def __init__(self, classifier: BaseEstimator, val_split=0.4, n_jobs=None):
self.classifier = classifier
self.val_split = val_split
self.n_jobs = qp._get_njobs(n_jobs)
2020-12-03 18:12:28 +01:00
def aggregation_fit(self, classif_predictions: LabelledCollection):
"""
Estimates the misclassification rates.
:param classif_predictions: classifier predictions with true labels
2023-11-12 13:04:19 +01:00
"""
true_labels, pred_labels = classif_predictions
self.cc = CC(self.classifier)
self.Pte_cond_estim_ = self.getPteCondEstim(self.classifier.classes_, true_labels, pred_labels)
2020-12-03 18:12:28 +01:00
@classmethod
def getPteCondEstim(cls, classes, y, y_):
# estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a
# document that belongs to yj ends up being classified as belonging to yi
conf = confusion_matrix(y, y_, labels=classes).T
conf = conf.astype(float)
class_counts = conf.sum(axis=0)
for i, _ in enumerate(classes):
if class_counts[i] == 0:
conf[i, i] = 1
else:
conf[:, i] /= class_counts[i]
return conf
def classify(self, data):
return self.cc.classify(data)
def aggregate(self, classif_predictions):
prevs_estim = self.cc.aggregate(classif_predictions)
2021-01-07 17:58:48 +01:00
return ACC.solve_adjustment(self.Pte_cond_estim_, prevs_estim)
@classmethod
def solve_adjustment(cls, PteCondEstim, prevs_estim):
"""
Solves the system linear system :math:`Ax = B` with :math:`A` = `PteCondEstim` and :math:`B` = `prevs_estim`
:param PteCondEstim: a `np.ndarray` of shape `(n_classes,n_classes,)` with entry `(i,j)` being the estimate
of :math:`P(y_i|y_j)`, that is, the probability that an instance that belongs to :math:`y_j` ends up being
classified as belonging to :math:`y_i`
:param prevs_estim: a `np.ndarray` of shape `(n_classes,)` with the class prevalence estimates
:return: an adjusted `np.ndarray` of shape `(n_classes,)` with the corrected class prevalence estimates
"""
A = PteCondEstim
2020-12-03 18:12:28 +01:00
B = prevs_estim
try:
adjusted_prevs = np.linalg.solve(A, B)
adjusted_prevs = np.clip(adjusted_prevs, 0, 1)
adjusted_prevs /= adjusted_prevs.sum()
except np.linalg.LinAlgError:
adjusted_prevs = prevs_estim # no way to adjust them!
return adjusted_prevs
2021-01-07 17:58:48 +01:00
class PCC(AggregativeProbabilisticQuantifier):
"""
`Probabilistic Classify & Count <https://ieeexplore.ieee.org/abstract/document/5694031>`_,
the probabilistic variant of CC that relies on the posterior probabilities returned by a probabilistic classifier.
:param classifier: a sklearn's Estimator that generates a classifier
"""
def __init__(self, classifier: BaseEstimator):
self.classifier = classifier
2020-12-03 18:12:28 +01:00
def aggregation_fit(self, classif_predictions: LabelledCollection):
2023-11-12 13:04:19 +01:00
"""
Nothing to do here!
:param classif_predictions: this is actually None
"""
pass
def aggregate(self, classif_posteriors):
return F.prevalence_from_probabilities(classif_posteriors, binarize=False)
2020-12-03 18:12:28 +01:00
2021-01-07 17:58:48 +01:00
class PACC(AggregativeProbabilisticQuantifier):
"""
`Probabilistic Adjusted Classify & Count <https://ieeexplore.ieee.org/abstract/document/5694031>`_,
the probabilistic variant of ACC that relies on the posterior probabilities returned by a probabilistic classifier.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
:param n_jobs: number of parallel workers
"""
2020-12-03 18:12:28 +01:00
def __init__(self, classifier: BaseEstimator, val_split=0.4, n_jobs=None):
self.classifier = classifier
self.val_split = val_split
self.n_jobs = qp._get_njobs(n_jobs)
2020-12-03 18:12:28 +01:00
def aggregation_fit(self, classif_predictions: LabelledCollection):
"""
Estimates the misclassification rates
:param classif_predictions: classifier predictions with true labels
2023-11-12 13:04:19 +01:00
"""
true_labels, posteriors = classif_predictions
self.pcc = PCC(self.classifier)
self.Pte_cond_estim_ = self.getPteCondEstim(self.classifier.classes_, true_labels, posteriors)
@classmethod
def getPteCondEstim(cls, classes, y, y_):
2021-01-11 12:55:06 +01:00
# estimate the matrix with entry (i,j) being the estimate of P(yi|yj), that is, the probability that a
# document that belongs to yj ends up being classified as belonging to yi
n_classes = len(classes)
confusion = np.eye(n_classes)
for i, class_ in enumerate(classes):
idx = y == class_
if idx.any():
confusion[i] = y_[idx].mean(axis=0)
return confusion.T
2020-12-03 18:12:28 +01:00
def aggregate(self, classif_posteriors):
prevs_estim = self.pcc.aggregate(classif_posteriors)
2021-01-07 17:58:48 +01:00
return ACC.solve_adjustment(self.Pte_cond_estim_, prevs_estim)
2020-12-03 18:12:28 +01:00
def classify(self, data):
return self.pcc.classify(data)
2021-01-07 17:58:48 +01:00
class EMQ(AggregativeProbabilisticQuantifier):
2021-02-16 19:38:52 +01:00
"""
`Expectation Maximization for Quantification <https://ieeexplore.ieee.org/abstract/document/6789744>`_ (EMQ),
aka `Saerens-Latinne-Decaestecker` (SLD) algorithm.
EMQ consists of using the well-known `Expectation Maximization algorithm` to iteratively update the posterior
probabilities generated by a probabilistic classifier and the class prevalence estimates obtained via
maximum-likelihood estimation, in a mutually recursive way, until convergence.
:param classifier: a sklearn's Estimator that generates a classifier
:param exact_train_prev: set to True (default) for using, as the initial observation, the true training prevalence;
or set to False for computing the training prevalence as an estimate, akin to PCC, i.e., as the expected
value of the posterior probabilities of the training instances as suggested in
`Alexandari et al. paper <http://proceedings.mlr.press/v119/alexandari20a.html>`_:
:param recalib: a string indicating the method of recalibration. Available choices include "nbvs" (No-Bias Vector
Scaling), "bcts" (Bias-Corrected Temperature Scaling), "ts" (Temperature Scaling), and "vs" (Vector Scaling).
The default value is None, indicating no recalibration.
2021-02-16 19:38:52 +01:00
"""
2020-12-03 18:12:28 +01:00
MAX_ITER = 1000
EPSILON = 1e-4
def __init__(self, classifier: BaseEstimator, exact_train_prev=True, recalib=None):
self.classifier = classifier
self.non_calibrated = classifier
self.exact_train_prev = exact_train_prev
self.recalib = recalib
2020-12-03 18:12:28 +01:00
def classifier_fit_predict(self, data: LabelledCollection, fit_classifier=True):
2023-11-12 13:04:19 +01:00
self.classifier, true_labels, posteriors, classes, class_count = cross_generate_predictions(
data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs
)
return (true_labels, posteriors)
if self.recalib is not None:
if self.recalib == 'nbvs':
self.classifier = NBVSCalibration(self.non_calibrated)
elif self.recalib == 'bcts':
self.classifier = BCTSCalibration(self.non_calibrated)
elif self.recalib == 'ts':
self.classifier = TSCalibration(self.non_calibrated)
elif self.recalib == 'vs':
self.classifier = VSCalibration(self.non_calibrated)
elif self.recalib == 'platt':
self.classifier = CalibratedClassifierCV(self.classifier, ensemble=False)
else:
raise ValueError('invalid param argument for recalibration method; available ones are '
'"nbvs", "bcts", "ts", and "vs".')
self.recalib = None
else:
self.classifier = self.non_calibrated
self.classifier, _ = _training_helper(self.classifier, data, fit_classifier, ensure_probabilistic=True)
if self.exact_train_prev:
self.train_prevalence = F.prevalence_from_labels(data.labels, self.classes_)
else:
self.train_prevalence = qp.model_selection.cross_val_predict(
quantifier=PCC(deepcopy(self.classifier)),
data=data,
nfolds=3,
random_state=0
)
2023-11-12 13:04:19 +01:00
return None
def aggregation_fit(self, classif_predictions: np.ndarray):
"""
Nothing to do here!
:param classif_predictions: this is actually None
"""
pass
2020-12-03 18:12:28 +01:00
def aggregate(self, classif_posteriors, epsilon=EPSILON):
2021-01-18 10:53:22 +01:00
priors, posteriors = self.EM(self.train_prevalence, classif_posteriors, epsilon)
return priors
def predict_proba(self, instances, epsilon=EPSILON):
classif_posteriors = self.classifier.predict_proba(instances)
2021-01-18 10:53:22 +01:00
priors, posteriors = self.EM(self.train_prevalence, classif_posteriors, epsilon)
return posteriors
2020-12-03 18:12:28 +01:00
@classmethod
2020-12-15 15:20:35 +01:00
def EM(cls, tr_prev, posterior_probabilities, epsilon=EPSILON):
"""
Computes the `Expectation Maximization` routine.
2021-12-15 15:27:43 +01:00
:param tr_prev: array-like, the training prevalence
:param posterior_probabilities: `np.ndarray` of shape `(n_instances, n_classes,)` with the
posterior probabilities
:param epsilon: float, the threshold different between two consecutive iterations
to reach before stopping the loop
:return: a tuple with the estimated prevalence values (shape `(n_classes,)`) and
the corrected posterior probabilities (shape `(n_instances, n_classes,)`)
"""
2020-12-03 18:12:28 +01:00
Px = posterior_probabilities
Ptr = np.copy(tr_prev)
qs = np.copy(Ptr) # qs (the running estimate) is initialized as the training prevalence
s, converged = 0, False
qs_prev_ = None
2021-01-07 17:58:48 +01:00
while not converged and s < EMQ.MAX_ITER:
2021-03-11 19:00:40 +01:00
# E-step: ps is Ps(y|xi)
2020-12-03 18:12:28 +01:00
ps_unnormalized = (qs / Ptr) * Px
2021-03-11 19:00:40 +01:00
ps = ps_unnormalized / ps_unnormalized.sum(axis=1, keepdims=True)
2020-12-03 18:12:28 +01:00
2021-03-11 19:00:40 +01:00
# M-step:
2020-12-03 18:12:28 +01:00
qs = ps.mean(axis=0)
2021-05-05 17:12:44 +02:00
if qs_prev_ is not None and qp.error.mae(qs, qs_prev_) < epsilon and s > 10:
2020-12-03 18:12:28 +01:00
converged = True
qs_prev_ = qs
s += 1
2020-12-03 18:12:28 +01:00
if not converged:
2021-01-25 09:02:11 +01:00
print('[warning] the method has reached the maximum number of iterations; it might have not converged')
2020-12-03 18:12:28 +01:00
2021-01-18 10:53:22 +01:00
return qs, ps
2020-12-03 18:12:28 +01:00
2021-01-07 17:58:48 +01:00
class HDy(AggregativeProbabilisticQuantifier, BinaryQuantifier):
"""
`Hellinger Distance y <https://www.sciencedirect.com/science/article/pii/S0020025512004069>`_ (HDy).
HDy is a probabilistic method for training binary quantifiers, that models quantification as the problem of
minimizing the divergence (in terms of the Hellinger Distance) between two distributions of posterior
probabilities returned by the classifier. One of the distributions is generated from the unlabelled examples and
the other is generated from a validation set. This latter distribution is defined as a mixture of the
class-conditional distributions of the posterior probabilities returned for the positive and negative validation
examples, respectively. The parameters of the mixture thus represent the estimates of the class prevalence values.
:param classifier: a sklearn's Estimator that generates a binary classifier
:param val_split: a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself).
"""
2020-12-03 18:12:28 +01:00
def __init__(self, classifier: BaseEstimator, val_split=0.4):
self.classifier = classifier
self.val_split = val_split
2020-12-03 18:12:28 +01:00
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
"""
Trains a HDy quantifier.
:param data: the training set
:param fit_classifier: set to False to bypass the training (the learner is assumed to be already fit)
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for
validation (e.g., 0.3 for using 30% of the training set as validation data), or a
:class:`quapy.data.base.LabelledCollection` indicating the validation set itself
:return: self
"""
if val_split is None:
val_split = self.val_split
self._check_binary(data, self.__class__.__name__)
self.classifier, validation = _training_helper(
self.classifier, data, fit_classifier, ensure_probabilistic=True, val_split=val_split)
2022-05-25 19:14:33 +02:00
Px = self.classify(validation.instances)[:, 1] # takes only the P(y=+1|x)
self.Pxy1 = Px[validation.labels == self.classifier.classes_[1]]
self.Pxy0 = Px[validation.labels == self.classifier.classes_[0]]
# pre-compute the histogram for positive and negative examples
2021-05-05 17:12:44 +02:00
self.bins = np.linspace(10, 110, 11, dtype=int) # [10, 20, 30, ..., 100, 110]
def hist(P, bins):
h = np.histogram(P, bins=bins, range=(0, 1), density=True)[0]
return h / h.sum()
self.Pxy1_density = {bins: hist(self.Pxy1, bins) for bins in self.bins}
self.Pxy0_density = {bins: hist(self.Pxy0, bins) for bins in self.bins}
return self
2020-12-03 18:12:28 +01:00
def aggregate(self, classif_posteriors):
# "In this work, the number of bins b used in HDx and HDy was chosen from 10 to 110 in steps of 10,
# and the final estimated a priori probability was taken as the median of these 11 estimates."
# (González-Castro, et al., 2013).
2020-12-03 18:12:28 +01:00
2021-05-05 17:12:44 +02:00
Px = classif_posteriors[:, 1] # takes only the P(y=+1|x)
2020-12-03 18:12:28 +01:00
prev_estimations = []
2021-05-05 17:12:44 +02:00
# for bins in np.linspace(10, 110, 11, dtype=int): #[10, 20, 30, ..., 100, 110]
# Pxy0_density, _ = np.histogram(self.Pxy0, bins=bins, range=(0, 1), density=True)
# Pxy1_density, _ = np.histogram(self.Pxy1, bins=bins, range=(0, 1), density=True)
for bins in self.bins:
Pxy0_density = self.Pxy0_density[bins]
Pxy1_density = self.Pxy1_density[bins]
2020-12-03 18:12:28 +01:00
Px_test, _ = np.histogram(Px, bins=bins, range=(0, 1), density=True)
# the authors proposed to search for the prevalence yielding the best matching as a linear search
# at small steps (modern implementations resort to an optimization procedure,
# see class DistributionMatching)
prev_selected, min_dist = None, None
for prev in F.prevalence_linspace(n_prevalences=100, repeats=1, smooth_limits_epsilon=0.0):
2021-05-05 17:12:44 +02:00
Px_train = prev * Pxy1_density + (1 - prev) * Pxy0_density
hdy = F.HellingerDistance(Px_train, Px_test)
if prev_selected is None or hdy < min_dist:
prev_selected, min_dist = prev, hdy
prev_estimations.append(prev_selected)
2021-05-05 17:12:44 +02:00
class1_prev = np.median(prev_estimations)
return np.asarray([1 - class1_prev, class1_prev])
2022-07-11 12:21:49 +02:00
class DyS(AggregativeProbabilisticQuantifier, BinaryQuantifier):
"""
2022-07-11 12:21:49 +02:00
`DyS framework <https://ojs.aaai.org/index.php/AAAI/article/view/4376>`_ (DyS).
DyS is a generalization of HDy method, using a Ternary Search in order to find the prevalence that
minimizes the distance between distributions.
Details for the ternary search have been got from <https://dl.acm.org/doi/pdf/10.1145/3219819.3220059>
:param classifier: a sklearn's Estimator that generates a binary classifier
2022-07-11 12:21:49 +02:00
:param val_split: a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself).
:param n_bins: an int with the number of bins to use to compute the histograms.
:param divergence: a str indicating the name of divergence (currently supported ones are "HD" or "topsoe"), or a
callable function computes the divergence between two distributions (two equally sized arrays).
2022-07-11 12:21:49 +02:00
:param tol: a float with the tolerance for the ternary search algorithm.
"""
2020-12-15 15:20:35 +01:00
def __init__(self, classifier: BaseEstimator, val_split=0.4, n_bins=8, divergence: Union[str, Callable]= 'HD', tol=1e-05):
self.classifier = classifier
2022-07-11 12:21:49 +02:00
self.val_split = val_split
self.tol = tol
self.divergence = divergence
2022-07-11 12:21:49 +02:00
self.n_bins = n_bins
def _ternary_search(self, f, left, right, tol):
"""
Find maximum of unimodal function f() within [left, right]
"""
while abs(right - left) >= tol:
left_third = left + (right - left) / 3
right_third = right - (right - left) / 3
if f(left_third) > f(right_third):
left = left_third
else:
right = right_third
# Left and right are the current bounds; the maximum is between them
return (left + right) / 2
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
2022-07-11 12:21:49 +02:00
if val_split is None:
val_split = self.val_split
2020-12-15 15:20:35 +01:00
self._check_binary(data, self.__class__.__name__)
self.classifier, validation = _training_helper(
self.classifier, data, fit_classifier, ensure_probabilistic=True, val_split=val_split)
2022-07-11 12:21:49 +02:00
Px = self.classify(validation.instances)[:, 1] # takes only the P(y=+1|x)
self.Pxy1 = Px[validation.labels == self.classifier.classes_[1]]
self.Pxy0 = Px[validation.labels == self.classifier.classes_[0]]
2022-07-11 12:21:49 +02:00
self.Pxy1_density = np.histogram(self.Pxy1, bins=self.n_bins, range=(0, 1), density=True)[0]
self.Pxy0_density = np.histogram(self.Pxy0, bins=self.n_bins, range=(0, 1), density=True)[0]
2020-12-15 15:20:35 +01:00
return self
2022-07-11 12:21:49 +02:00
def aggregate(self, classif_posteriors):
Px = classif_posteriors[:, 1] # takes only the P(y=+1|x)
2020-12-15 15:20:35 +01:00
2022-07-11 12:21:49 +02:00
Px_test = np.histogram(Px, bins=self.n_bins, range=(0, 1), density=True)[0]
divergence = get_divergence(self.divergence)
2020-12-15 15:20:35 +01:00
2022-07-11 12:21:49 +02:00
def distribution_distance(prev):
Px_train = prev * self.Pxy1_density + (1 - prev) * self.Pxy0_density
return divergence(Px_train, Px_test)
2022-07-11 12:21:49 +02:00
class1_prev = self._ternary_search(f=distribution_distance, left=0, right=1, tol=self.tol)
return np.asarray([1 - class1_prev, class1_prev])
2020-12-15 15:20:35 +01:00
2022-07-11 14:04:28 +02:00
class SMM(AggregativeProbabilisticQuantifier, BinaryQuantifier):
"""
`SMM method <https://ieeexplore.ieee.org/document/9260028>`_ (SMM).
SMM is a simplification of matching distribution methods where the representation of the examples
is created using the mean instead of a histogram.
:param classifier: a sklearn's Estimator that generates a binary classifier.
2022-07-11 14:04:28 +02:00
:param val_split: a float in range (0,1) indicating the proportion of data to be used as a stratified held-out
validation distribution, or a :class:`quapy.data.base.LabelledCollection` (the split itself).
2021-02-16 19:38:52 +01:00
"""
2021-05-05 17:12:44 +02:00
def __init__(self, classifier: BaseEstimator, val_split=0.4):
self.classifier = classifier
2022-07-11 14:04:28 +02:00
self.val_split = val_split
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
2022-07-11 14:04:28 +02:00
if val_split is None:
val_split = self.val_split
self._check_binary(data, self.__class__.__name__)
self.classifier, validation = _training_helper(
self.classifier, data, fit_classifier, ensure_probabilistic=True, val_split=val_split)
2022-07-11 14:04:28 +02:00
Px = self.classify(validation.instances)[:, 1] # takes only the P(y=+1|x)
self.Pxy1 = Px[validation.labels == self.classifier.classes_[1]]
self.Pxy0 = Px[validation.labels == self.classifier.classes_[0]]
2022-07-11 14:04:28 +02:00
self.Pxy1_mean = np.mean(self.Pxy1)
self.Pxy0_mean = np.mean(self.Pxy0)
return self
def aggregate(self, classif_posteriors):
Px = classif_posteriors[:, 1] # takes only the P(y=+1|x)
Px_mean = np.mean(Px)
class1_prev = (Px_mean - self.Pxy0_mean)/(self.Pxy1_mean - self.Pxy0_mean)
class1_prev = np.clip(class1_prev, 0, 1)
return np.asarray([1 - class1_prev, class1_prev])
2020-12-15 15:20:35 +01:00
class DMy(AggregativeProbabilisticQuantifier):
"""
Generic Distribution Matching quantifier for binary or multiclass quantification based on the space of posterior
probabilities. This implementation takes the number of bins, the divergence, and the possibility to work on CDF
as hyperparameters.
:param classifier: a `sklearn`'s Estimator that generates a probabilistic classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set to model the
validation distribution.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the validation distribution should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
:param nbins: number of bins used to discretize the distributions (default 8)
:param divergence: a string representing a divergence measure (currently, "HD" and "topsoe" are implemented)
or a callable function taking two ndarrays of the same dimension as input (default "HD", meaning Hellinger
Distance)
:param cdf: whether to use CDF instead of PDF (default False)
:param n_jobs: number of parallel workers (default None)
2021-02-16 19:38:52 +01:00
"""
def __init__(self, classifier, val_split=0.4, nbins=8, divergence: Union[str, Callable]='HD',
cdf=False, search='optim_minimize', n_jobs=None):
self.classifier = classifier
self.val_split = val_split
self.nbins = nbins
self.divergence = divergence
self.cdf = cdf
self.search = search
self.n_jobs = n_jobs
@classmethod
def HDy(cls, classifier, val_split=0.4, n_jobs=None):
from quapy.method.meta import MedianEstimator
hdy = DMy(classifier=classifier, val_split=val_split, search='linear_search', divergence='HD')
hdy = MedianEstimator(hdy, param_grid={'nbins': np.linspace(10, 110, 11).astype(int)}, n_jobs=n_jobs)
return hdy
def __get_distributions(self, posteriors):
histograms = []
post_dims = posteriors.shape[1]
if post_dims == 2:
# in binary quantification we can use only one class, since the other one is its complement
post_dims = 1
for dim in range(post_dims):
hist = np.histogram(posteriors[:, dim], bins=self.nbins, range=(0, 1))[0]
histograms.append(hist)
counts = np.vstack(histograms)
distributions = counts/counts.sum(axis=1)[:,np.newaxis]
if self.cdf:
distributions = np.cumsum(distributions, axis=1)
return distributions
def classifier_fit_predict(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, LabelledCollection] = None):
"""
Trains the classifier (if requested) and generates the validation distributions out of the training data.
The validation distributions have shape `(n, ch, nbins)`, with `n` the number of classes, `ch` the number of
channels, and `nbins` the number of bins. In particular, let `V` be the validation distributions; then `di=V[i]`
are the distributions obtained from training data labelled with class `i`; while `dij = di[j]` is the discrete
distribution of posterior probabilities `P(Y=j|X=x)` for training data labelled with class `i`, and `dij[k]`
is the fraction of instances with a value in the `k`-th bin.
:param data: the training set
:param fit_classifier: set to False to bypass the training (the learner is assumed to be already fit)
:param val_split: either a float in (0,1) indicating the proportion of training instances to use for
validation (e.g., 0.3 for using 30% of the training set as validation data), or a LabelledCollection
indicating the validation set itself, or an int indicating the number k of folds to be used in kFCV
to estimate the parameters
"""
if val_split is None:
val_split = self.val_split
2023-11-12 13:04:19 +01:00
self.classifier, true_labels, posteriors, classes, class_count = cross_generate_predictions(
data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs
)
2023-11-12 13:04:19 +01:00
return (true_labels, posteriors)
def aggregation_fit(self, classif_predictions):
true_labels, posteriors = classif_predictions
n_classes = len(self.classifier.classes_)
self.validation_distribution = np.asarray(
2023-11-12 13:04:19 +01:00
[self.__get_distributions(posteriors[true_labels == cat]) for cat in range(n_classes)]
)
def aggregate(self, posteriors: np.ndarray):
"""
Searches for the mixture model parameter (the sought prevalence values) that yields a validation distribution
(the mixture) that best matches the test distribution, in terms of the divergence measure of choice.
In the multiclass case, with `n` the number of classes, the test and mixture distributions contain
`n` channels (proper distributions of binned posterior probabilities), on which the divergence is computed
independently. The matching is computed as an average of the divergence across all channels.
:param posteriors: posterior probabilities of the instances in the sample
:return: a vector of class prevalence estimates
"""
test_distribution = self.__get_distributions(posteriors)
divergence = get_divergence(self.divergence)
n_classes, n_channels, nbins = self.validation_distribution.shape
def loss(prev):
prev = np.expand_dims(prev, axis=0)
mixture_distribution = (prev @ self.validation_distribution.reshape(n_classes,-1)).reshape(n_channels, -1)
divs = [divergence(test_distribution[ch], mixture_distribution[ch]) for ch in range(n_channels)]
return np.mean(divs)
return F.argmin_prevalence(loss, n_classes, method=self.search)
2022-07-11 14:04:28 +02:00
2023-02-13 12:01:52 +01:00
def newELM(svmperf_base=None, loss='01', C=1):
2021-02-16 19:38:52 +01:00
"""
2023-02-13 12:01:52 +01:00
Explicit Loss Minimization (ELM) quantifiers.
2021-12-15 15:27:43 +01:00
Quantifiers based on ELM represent a family of methods based on structured output learning;
these quantifiers rely on classifiers that have been optimized using a quantification-oriented loss
measure. This implementation relies on
`Joachims SVM perf <https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html>`_ structured output
learning algorithm, which has to be installed and patched for the purpose (see this
`script <https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh>`_).
2023-02-13 12:01:52 +01:00
This function equivalent to:
2021-05-05 17:12:44 +02:00
2023-02-13 12:01:52 +01:00
>>> CC(SVMperf(svmperf_base, loss, C))
2020-12-15 15:20:35 +01:00
2023-02-13 12:01:52 +01:00
:param svmperf_base: path to the folder containing the binary files of `SVM perf`; if set to None (default)
this path will be obtained from qp.environ['SVMPERF_HOME']
2021-12-15 15:27:43 +01:00
:param loss: the loss to optimize (see :attr:`quapy.classification.svmperf.SVMperf.valid_losses`)
2023-02-13 12:01:52 +01:00
:param C: trade-off between training error and margin (default 0.01)
:return: returns an instance of CC set to work with SVMperf (with loss and C set properly) as the
underlying classifier
2021-12-15 15:27:43 +01:00
"""
2023-02-13 12:01:52 +01:00
if svmperf_base is None:
svmperf_base = qp.environ['SVMPERF_HOME']
assert svmperf_base is not None, \
'param svmperf_base was not specified, and the variable SVMPERF_HOME has not been set in the environment'
return CC(SVMperf(svmperf_base, loss=loss, C=C))
2020-12-15 15:20:35 +01:00
2023-02-13 12:01:52 +01:00
def newSVMQ(svmperf_base=None, C=1):
2021-02-16 19:38:52 +01:00
"""
2023-02-13 12:01:52 +01:00
SVM(Q) is an Explicit Loss Minimization (ELM) quantifier set to optimize for the `Q` loss combining a
classification-oriented loss and a quantification-oriented loss, as proposed by
2021-12-15 15:27:43 +01:00
`Barranquero et al. 2015 <https://www.sciencedirect.com/science/article/pii/S003132031400291X>`_.
Equivalent to:
2023-02-13 12:01:52 +01:00
>>> CC(SVMperf(svmperf_base, loss='q', C=C))
2021-12-15 15:27:43 +01:00
2023-02-13 12:01:52 +01:00
Quantifiers based on ELM represent a family of methods based on structured output learning;
these quantifiers rely on classifiers that have been optimized using a quantification-oriented loss
measure. This implementation relies on
`Joachims SVM perf <https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html>`_ structured output
learning algorithm, which has to be installed and patched for the purpose (see this
`script <https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh>`_).
This function is a wrapper around CC(SVMperf(svmperf_base, loss, C))
2020-12-15 15:20:35 +01:00
2023-02-13 12:01:52 +01:00
:param svmperf_base: path to the folder containing the binary files of `SVM perf`; if set to None (default)
this path will be obtained from qp.environ['SVMPERF_HOME']
:param C: trade-off between training error and margin (default 0.01)
:return: returns an instance of CC set to work with SVMperf (with loss and C set properly) as the
underlying classifier
"""
return newELM(svmperf_base, loss='q', C=C)
2023-02-13 12:01:52 +01:00
def newSVMKLD(svmperf_base=None, C=1):
2021-02-16 19:38:52 +01:00
"""
2023-02-13 12:01:52 +01:00
SVM(KLD) is an Explicit Loss Minimization (ELM) quantifier set to optimize for the Kullback-Leibler Divergence
as proposed by `Esuli et al. 2015 <https://dl.acm.org/doi/abs/10.1145/2700406>`_.
2021-12-15 15:27:43 +01:00
Equivalent to:
2021-05-05 17:12:44 +02:00
2023-02-13 12:01:52 +01:00
>>> CC(SVMperf(svmperf_base, loss='kld', C=C))
2020-12-15 15:20:35 +01:00
2023-02-13 12:01:52 +01:00
Quantifiers based on ELM represent a family of methods based on structured output learning;
these quantifiers rely on classifiers that have been optimized using a quantification-oriented loss
measure. This implementation relies on
`Joachims SVM perf <https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html>`_ structured output
learning algorithm, which has to be installed and patched for the purpose (see this
`script <https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh>`_).
This function is a wrapper around CC(SVMperf(svmperf_base, loss, C))
2020-12-15 15:20:35 +01:00
2023-02-13 12:01:52 +01:00
:param svmperf_base: path to the folder containing the binary files of `SVM perf`; if set to None (default)
this path will be obtained from qp.environ['SVMPERF_HOME']
:param C: trade-off between training error and margin (default 0.01)
:return: returns an instance of CC set to work with SVMperf (with loss and C set properly) as the
underlying classifier
"""
2023-02-13 12:01:52 +01:00
return newELM(svmperf_base, loss='kld', C=C)
2023-02-13 12:01:52 +01:00
def newSVMKLD(svmperf_base=None, C=1):
"""
2023-02-13 12:01:52 +01:00
SVM(KLD) is an Explicit Loss Minimization (ELM) quantifier set to optimize for the Kullback-Leibler Divergence
normalized via the logistic function, as proposed by
2021-12-15 15:27:43 +01:00
`Esuli et al. 2015 <https://dl.acm.org/doi/abs/10.1145/2700406>`_.
Equivalent to:
2023-02-13 12:01:52 +01:00
>>> CC(SVMperf(svmperf_base, loss='nkld', C=C))
2021-05-05 17:12:44 +02:00
2023-02-13 12:01:52 +01:00
Quantifiers based on ELM represent a family of methods based on structured output learning;
these quantifiers rely on classifiers that have been optimized using a quantification-oriented loss
measure. This implementation relies on
`Joachims SVM perf <https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html>`_ structured output
learning algorithm, which has to be installed and patched for the purpose (see this
`script <https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh>`_).
This function is a wrapper around CC(SVMperf(svmperf_base, loss, C))
2020-12-15 15:20:35 +01:00
2023-02-13 12:01:52 +01:00
:param svmperf_base: path to the folder containing the binary files of `SVM perf`; if set to None (default)
this path will be obtained from qp.environ['SVMPERF_HOME']
:param C: trade-off between training error and margin (default 0.01)
:return: returns an instance of CC set to work with SVMperf (with loss and C set properly) as the
underlying classifier
"""
return newELM(svmperf_base, loss='nkld', C=C)
2020-12-15 15:20:35 +01:00
2023-02-13 12:01:52 +01:00
def newSVMAE(svmperf_base=None, C=1):
"""
2023-02-13 12:01:52 +01:00
SVM(KLD) is an Explicit Loss Minimization (ELM) quantifier set to optimize for the Absolute Error as first used by
`Moreo and Sebastiani, 2021 <https://arxiv.org/abs/2011.02552>`_.
Equivalent to:
2023-02-13 12:01:52 +01:00
>>> CC(SVMperf(svmperf_base, loss='mae', C=C))
2021-12-15 15:27:43 +01:00
2023-02-13 12:01:52 +01:00
Quantifiers based on ELM represent a family of methods based on structured output learning;
these quantifiers rely on classifiers that have been optimized using a quantification-oriented loss
measure. This implementation relies on
`Joachims SVM perf <https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html>`_ structured output
learning algorithm, which has to be installed and patched for the purpose (see this
`script <https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh>`_).
This function is a wrapper around CC(SVMperf(svmperf_base, loss, C))
2020-12-15 15:20:35 +01:00
2023-02-13 12:01:52 +01:00
:param svmperf_base: path to the folder containing the binary files of `SVM perf`; if set to None (default)
this path will be obtained from qp.environ['SVMPERF_HOME']
:param C: trade-off between training error and margin (default 0.01)
:return: returns an instance of CC set to work with SVMperf (with loss and C set properly) as the
underlying classifier
"""
return newELM(svmperf_base, loss='mae', C=C)
2023-02-13 19:27:48 +01:00
def newSVMRAE(svmperf_base=None, C=1):
"""
2023-02-13 12:01:52 +01:00
SVM(KLD) is an Explicit Loss Minimization (ELM) quantifier set to optimize for the Relative Absolute Error as first
used by `Moreo and Sebastiani, 2021 <https://arxiv.org/abs/2011.02552>`_.
2021-12-15 15:27:43 +01:00
Equivalent to:
2023-02-13 12:01:52 +01:00
>>> CC(SVMperf(svmperf_base, loss='mrae', C=C))
2021-12-15 15:27:43 +01:00
2023-02-13 12:01:52 +01:00
Quantifiers based on ELM represent a family of methods based on structured output learning;
these quantifiers rely on classifiers that have been optimized using a quantification-oriented loss
measure. This implementation relies on
`Joachims SVM perf <https://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html>`_ structured output
learning algorithm, which has to be installed and patched for the purpose (see this
`script <https://github.com/HLT-ISTI/QuaPy/blob/master/prepare_svmperf.sh>`_).
This function is a wrapper around CC(SVMperf(svmperf_base, loss, C))
2023-02-13 12:01:52 +01:00
:param svmperf_base: path to the folder containing the binary files of `SVM perf`; if set to None (default)
this path will be obtained from qp.environ['SVMPERF_HOME']
:param C: trade-off between training error and margin (default 0.01)
:return: returns an instance of CC set to work with SVMperf (with loss and C set properly) as the
underlying classifier
"""
return newELM(svmperf_base, loss='mrae', C=C)
2020-12-15 15:20:35 +01:00
class ThresholdOptimization(AggregativeQuantifier, BinaryQuantifier):
"""
Abstract class of Threshold Optimization variants for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_.
The goal is to bring improved stability to the denominator of the adjustment.
The different variants are based on different heuristics for choosing a decision threshold
that would allow for more true positives and many more false positives, on the grounds this
would deliver larger denominators.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=0.4, n_jobs=None):
self.classifier = classifier
self.val_split = val_split
self.n_jobs = qp._get_njobs(n_jobs)
def fit(self, data: LabelledCollection, fit_classifier=True, val_split: Union[float, int, LabelledCollection] = None):
self._check_binary(data, "Threshold Optimization")
if val_split is None:
val_split = self.val_split
self.classifier, y, y_, classes, class_count = cross_generate_predictions(
data, self.classifier, val_split, probabilistic=True, fit_classifier=fit_classifier, n_jobs=self.n_jobs
2022-05-25 19:14:33 +02:00
)
self.cc = CC(self.classifier)
2022-05-25 19:14:33 +02:00
self.tpr, self.fpr = self._optimize_threshold(y, y_)
return self
@abstractmethod
def _condition(self, tpr, fpr) -> float:
"""
Implements the criterion according to which the threshold should be selected.
This function should return the (float) score to be minimized.
:param tpr: float, true positive rate
:param fpr: float, false positive rate
:return: float, a score for the given `tpr` and `fpr`
"""
...
def _optimize_threshold(self, y, probabilities):
"""
Seeks for the best `tpr` and `fpr` according to the score obtained at different
decision thresholds. The scoring function is implemented in function `_condition`.
:param y: predicted labels for the validation set (or for the training set via `k`-fold cross validation)
:param probabilities: array-like with the posterior probabilities
:return: best `tpr` and `fpr` according to `_condition`
"""
best_candidate_threshold_score = None
best_tpr = 0
best_fpr = 0
candidate_thresholds = np.unique(probabilities[:, 1])
for candidate_threshold in candidate_thresholds:
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
TP, FP, FN, TN = self._compute_table(y, y_)
tpr = self._compute_tpr(TP, FP)
fpr = self._compute_fpr(FP, TN)
condition_score = self._condition(tpr, fpr)
if best_candidate_threshold_score is None or condition_score < best_candidate_threshold_score:
best_candidate_threshold_score = condition_score
best_tpr = tpr
best_fpr = fpr
return best_tpr, best_fpr
def aggregate(self, classif_predictions):
prevs_estim = self.cc.aggregate(classif_predictions)
if self.tpr - self.fpr == 0:
return prevs_estim
adjusted_prevs_estim = np.clip((prevs_estim[1] - self.fpr) / (self.tpr - self.fpr), 0, 1)
adjusted_prevs_estim = np.array((1 - adjusted_prevs_estim, adjusted_prevs_estim))
return adjusted_prevs_estim
def _compute_table(self, y, y_):
TP = np.logical_and(y == y_, y == self.classes_[1]).sum()
FP = np.logical_and(y != y_, y == self.classes_[0]).sum()
FN = np.logical_and(y != y_, y == self.classes_[1]).sum()
TN = np.logical_and(y == y_, y == self.classes_[0]).sum()
return TP, FP, FN, TN
def _compute_tpr(self, TP, FP):
if TP + FP == 0:
2022-05-25 19:14:33 +02:00
return 1
return TP / (TP + FP)
def _compute_fpr(self, FP, TN):
if FP + TN == 0:
return 0
return FP / (FP + TN)
class T50(ThresholdOptimization):
"""
Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
for the threshold that makes `tpr` cosest to 0.5.
The goal is to bring improved stability to the denominator of the adjustment.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=0.4):
super().__init__(classifier, val_split)
def _condition(self, tpr, fpr) -> float:
return abs(tpr - 0.5)
class MAX(ThresholdOptimization):
"""
Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
for the threshold that maximizes `tpr-fpr`.
The goal is to bring improved stability to the denominator of the adjustment.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=0.4):
super().__init__(classifier, val_split)
def _condition(self, tpr, fpr) -> float:
# MAX strives to maximize (tpr - fpr), which is equivalent to minimize (fpr - tpr)
return (fpr - tpr)
class X(ThresholdOptimization):
"""
Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that looks
for the threshold that yields `tpr=1-fpr`.
The goal is to bring improved stability to the denominator of the adjustment.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=0.4):
super().__init__(classifier, val_split)
def _condition(self, tpr, fpr) -> float:
return abs(1 - (tpr + fpr))
class MS(ThresholdOptimization):
"""
Median Sweep. Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that generates
class prevalence estimates for all decision thresholds and returns the median of them all.
The goal is to bring improved stability to the denominator of the adjustment.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=0.4):
super().__init__(classifier, val_split)
def _condition(self, tpr, fpr) -> float:
pass
def _optimize_threshold(self, y, probabilities):
tprs = []
fprs = []
candidate_thresholds = np.unique(probabilities[:, 1])
for candidate_threshold in candidate_thresholds:
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
TP, FP, FN, TN = self._compute_table(y, y_)
tpr = self._compute_tpr(TP, FP)
fpr = self._compute_fpr(FP, TN)
tprs.append(tpr)
fprs.append(fpr)
return np.median(tprs), np.median(fprs)
class MS2(MS):
"""
Median Sweep 2. Threshold Optimization variant for :class:`ACC` as proposed by
`Forman 2006 <https://dl.acm.org/doi/abs/10.1145/1150402.1150423>`_ and
`Forman 2008 <https://link.springer.com/article/10.1007/s10618-008-0097-y>`_ that generates
class prevalence estimates for all decision thresholds and returns the median of for cases in
which `tpr-fpr>0.25`
The goal is to bring improved stability to the denominator of the adjustment.
:param classifier: a sklearn's Estimator that generates a classifier
:param val_split: indicates the proportion of data to be used as a stratified held-out validation set in which the
misclassification rates are to be estimated.
This parameter can be indicated as a real value (between 0 and 1, default 0.4), representing a proportion of
validation data, or as an integer, indicating that the misclassification rates should be estimated via
`k`-fold cross validation (this integer stands for the number of folds `k`), or as a
:class:`quapy.data.base.LabelledCollection` (the split itself).
"""
def __init__(self, classifier: BaseEstimator, val_split=0.4):
super().__init__(classifier, val_split)
def _optimize_threshold(self, y, probabilities):
tprs = [0, 1]
fprs = [0, 1]
candidate_thresholds = np.unique(probabilities[:, 1])
for candidate_threshold in candidate_thresholds:
y_ = [self.classes_[1] if p > candidate_threshold else self.classes_[0] for p in probabilities[:, 1]]
TP, FP, FN, TN = self._compute_table(y, y_)
tpr = self._compute_tpr(TP, FP)
fpr = self._compute_fpr(FP, TN)
if (tpr - fpr) > 0.25:
tprs.append(tpr)
fprs.append(fpr)
return np.median(tprs), np.median(fprs)
2023-02-09 19:39:16 +01:00
class OneVsAllAggregative(OneVsAllGeneric, AggregativeQuantifier):
"""
Allows any binary quantifier to perform quantification on single-label datasets.
The method maintains one binary quantifier for each class, and then l1-normalizes the outputs so that the
class prevelences sum up to 1.
This variant was used, along with the :class:`EMQ` quantifier, in
`Gao and Sebastiani, 2016 <https://link.springer.com/content/pdf/10.1007/s13278-016-0327-z.pdf>`_.
:param binary_quantifier: a quantifier (binary) that will be employed to work on multiclass model in a
one-vs-all manner
:param n_jobs: number of parallel workers
2023-02-09 19:39:16 +01:00
:param parallel_backend: the parallel backend for joblib (default "loky"); this is helpful for some quantifiers
(e.g., ELM-based ones) that cannot be run with multiprocessing, since the temp dir they create during fit will
is removed and no longer available at predict time.
"""
2023-02-10 19:02:17 +01:00
def __init__(self, binary_quantifier, n_jobs=None, parallel_backend='multiprocessing'):
2023-02-09 19:39:16 +01:00
assert isinstance(binary_quantifier, BaseQuantifier), \
f'{self.binary_quantifier} does not seem to be a Quantifier'
2023-02-09 19:39:16 +01:00
assert isinstance(binary_quantifier, AggregativeQuantifier), \
f'{self.binary_quantifier} does not seem to be of type Aggregative'
self.binary_quantifier = binary_quantifier
self.n_jobs = qp._get_njobs(n_jobs)
2023-02-09 19:39:16 +01:00
self.parallel_backend = parallel_backend
2020-12-03 18:12:28 +01:00
def classify(self, instances):
"""
2022-05-25 19:14:33 +02:00
If the base quantifier is not probabilistic, returns a matrix of shape `(n,m,)` with `n` the number of
instances and `m` the number of classes. The entry `(i,j)` is a binary value indicating whether instance
`i `belongs to class `j`. The binary classifications are independent of each other, meaning that an instance
can end up be attributed to 0, 1, or more classes.
If the base quantifier is probabilistic, returns a matrix of shape `(n,m,2)` with `n` the number of instances
and `m` the number of classes. The entry `(i,j,1)` (resp. `(i,j,0)`) is a value in [0,1] indicating the
posterior probability that instance `i` belongs (resp. does not belong) to class `j`. The posterior
probabilities are independent of each other, meaning that, in general, they do not sum up to one.
:param instances: array-like
:return: `np.ndarray`
"""
2023-02-09 19:39:16 +01:00
classif_predictions = self._parallel(self._delayed_binary_classification, instances)
2022-05-25 19:14:33 +02:00
if isinstance(self.binary_quantifier, AggregativeProbabilisticQuantifier):
return np.swapaxes(classif_predictions, 0, 1)
else:
2022-05-25 19:14:33 +02:00
return classif_predictions.T
2020-12-03 18:12:28 +01:00
2022-05-25 19:14:33 +02:00
def aggregate(self, classif_predictions):
2023-02-09 19:39:16 +01:00
prevalences = self._parallel(self._delayed_binary_aggregate, classif_predictions)
return F.normalize_prevalence(prevalences)
def _delayed_binary_classification(self, c, X):
return self.dict_binary_quantifiers[c].classify(X)
def _delayed_binary_aggregate(self, c, classif_predictions):
2021-01-11 12:55:06 +01:00
# the estimation for the positive class prevalence
return self.dict_binary_quantifiers[c].aggregate(classif_predictions[:, c])[1]
2020-12-03 18:12:28 +01:00
#---------------------------------------------------------------
# aliases
#---------------------------------------------------------------
ClassifyAndCount = CC
AdjustedClassifyAndCount = ACC
ProbabilisticClassifyAndCount = PCC
ProbabilisticAdjustedClassifyAndCount = PACC
ExpectationMaximizationQuantifier = EMQ
DistributionMatchingY = DMy
SLD = EMQ
HellingerDistanceY = HDy
MedianSweep = MS
MedianSweep2 = MS2