forked from moreo/QuaPy
revised
This commit is contained in:
parent
ffab2131a8
commit
ea71559722
|
@ -6,11 +6,9 @@ import os
|
|||
import zipfile
|
||||
from os.path import join
|
||||
import pandas as pd
|
||||
import scipy
|
||||
|
||||
from ucimlrepo import fetch_ucirepo
|
||||
|
||||
from quapy.util import pickled_resource
|
||||
from quapy.data.base import Dataset, LabelledCollection
|
||||
from quapy.data.preprocessing import text2tfidf, reduce_columns
|
||||
from quapy.data.reader import *
|
||||
|
@ -557,17 +555,26 @@ def fetch_UCILabelledCollection(dataset_name, data_home=None, verbose=False) ->
|
|||
data.stats()
|
||||
return data
|
||||
|
||||
|
||||
def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, verbose=False) -> Dataset:
|
||||
"""
|
||||
Loads a UCI multiclass dataset as an instance of :class:`quapy.data.base.Dataset`.
|
||||
|
||||
The list of available datasets is taken from https://archive.ics.uci.edu/, following these criteria:
|
||||
- The dataset has more than 1000 instances
|
||||
- The dataset is suited for classification
|
||||
- the dataset has more than two classes
|
||||
- It has more than 1000 instances
|
||||
- It is suited for classification
|
||||
- It has more than two classes
|
||||
- It is available for Python import (requires ucimlrepo package)
|
||||
|
||||
>>> import quapy as qp
|
||||
>>> dataset = qp.datasets.fetch_UCIMulticlassDataset("dry-bean")
|
||||
>>> train, test = dataset.train_test
|
||||
>>> ...
|
||||
|
||||
The list of valid dataset names can be accessed in `quapy.data.datasets.UCI_MULTICLASS_DATASETS`
|
||||
|
||||
The datasets are downloaded only once and pickled into disk, saving time for consecutive calls.
|
||||
|
||||
:param dataset_name: a dataset name
|
||||
:param data_home: specify the quapy home directory where collections will be dumped (leave empty to use the default
|
||||
~/quay_data/ directory)
|
||||
|
@ -578,14 +585,20 @@ def fetch_UCIMulticlassDataset(dataset_name, data_home=None, test_split=0.3, ver
|
|||
data = fetch_UCIMulticlassLabelledCollection(dataset_name, data_home, verbose)
|
||||
return Dataset(*data.split_stratified(1 - test_split, random_state=0))
|
||||
|
||||
|
||||
def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=False) -> LabelledCollection:
|
||||
"""
|
||||
Loads a UCI multiclass collection as an instance of :class:`quapy.data.base.LabelledCollection`.
|
||||
|
||||
It needs the library `ucimlrepo` for downloading the datasets from https://archive.ics.uci.edu/.
|
||||
Loads a UCI multiclass collection as an instance of :class:`quapy.data.base.LabelledCollection`.
|
||||
|
||||
The list of available datasets is taken from https://archive.ics.uci.edu/, following these criteria:
|
||||
- It has more than 1000 instances
|
||||
- It is suited for classification
|
||||
- It has more than two classes
|
||||
- It is available for Python import (requires ucimlrepo package)
|
||||
|
||||
>>> import quapy as qp
|
||||
>>> dataset = qp.datasets.fetch_UCIMulticlassLabelledCollection("dry-bean")
|
||||
>>> collection = qp.datasets.fetch_UCIMulticlassLabelledCollection("dry-bean")
|
||||
>>> X, y = collection.Xy
|
||||
>>> ...
|
||||
|
||||
The list of valid dataset names can be accessed in `quapy.data.datasets.UCI_MULTICLASS_DATASETS`
|
||||
|
@ -600,43 +613,49 @@ def fetch_UCIMulticlassLabelledCollection(dataset_name, data_home=None, verbose=
|
|||
:return: a :class:`quapy.data.base.LabelledCollection` instance
|
||||
"""
|
||||
assert dataset_name in UCI_MULTICLASS_DATASETS, \
|
||||
f'Name {dataset_name} does not match any known dataset from the UCI Machine Learning datasets repository (multiclass). ' \
|
||||
f'Name {dataset_name} does not match any known dataset from the ' \
|
||||
f'UCI Machine Learning datasets repository (multiclass). ' \
|
||||
f'Valid ones are {UCI_MULTICLASS_DATASETS}'
|
||||
|
||||
if data_home is None:
|
||||
data_home = get_quapy_home()
|
||||
|
||||
identifiers = {"dry-bean": 602,
|
||||
"wine-quality":186,
|
||||
"academic-success":697,
|
||||
"digits":80,
|
||||
"letter":59}
|
||||
identifiers = {
|
||||
"dry-bean": 602,
|
||||
"wine-quality": 186,
|
||||
"academic-success": 697,
|
||||
"digits": 80,
|
||||
"letter": 59
|
||||
}
|
||||
|
||||
full_names = {"dry-bean": "Dry Bean Dataset",
|
||||
"wine-quality":"Wine Quality",
|
||||
"academic-success":"Predict students' dropout and academic success",
|
||||
"digits":"Optical Recognition of Handwritten Digits",
|
||||
"letter":"Letter Recognition"
|
||||
full_names = {
|
||||
"dry-bean": "Dry Bean Dataset",
|
||||
"wine-quality": "Wine Quality",
|
||||
"academic-success": "Predict students' dropout and academic success",
|
||||
"digits": "Optical Recognition of Handwritten Digits",
|
||||
"letter": "Letter Recognition"
|
||||
}
|
||||
|
||||
identifier = identifiers[dataset_name]
|
||||
fullname = full_names[dataset_name]
|
||||
|
||||
print(f'Loading UCI Muticlass {dataset_name} ({fullname})')
|
||||
if verbose:
|
||||
print(f'Loading UCI Muticlass {dataset_name} ({fullname})')
|
||||
|
||||
file = join(data_home,'uci_multiclass',dataset_name+'.pkl')
|
||||
file = join(data_home, 'uci_multiclass', dataset_name+'.pkl')
|
||||
|
||||
def download(id):
|
||||
data = fetch_ucirepo(id=id)
|
||||
X, y = data['data']['features'].to_numpy(), data['data']['targets'].to_numpy().squeeze()
|
||||
classes = np.sort(np.unique(y))
|
||||
y = np.searchsorted(classes, y)
|
||||
return LabelledCollection(X,y)
|
||||
return LabelledCollection(X, y)
|
||||
|
||||
data = pickled_resource(file, download, identifier)
|
||||
|
||||
if verbose:
|
||||
data.stats()
|
||||
|
||||
return data
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue