159 lines
5.1 KiB
C++
159 lines
5.1 KiB
C++
#ifndef ELEMENTALMESH_HPP
|
|
#define ELEMENTALMESH_HPP
|
|
|
|
#include "Eigen/Dense"
|
|
#include "edgemesh.hpp"
|
|
#include "flatpattern.hpp"
|
|
|
|
struct Element;
|
|
struct Node;
|
|
using CrossSectionType = RectangularBeamDimensions;
|
|
|
|
class SimulationMesh : public VCGEdgeMesh {
|
|
private:
|
|
void computeElementalProperties();
|
|
void initializeNodes();
|
|
void initializeElements();
|
|
EdgePointer getReferenceElement(const VertexType &v);
|
|
|
|
const std::string plyPropertyBeamDimensionsID{"beam_dimensions"};
|
|
const std::string plyPropertyBeamMaterialID{"beam_material"};
|
|
|
|
public:
|
|
PerEdgeAttributeHandle<Element> elements;
|
|
PerVertexAttributeHandle<Node> nodes;
|
|
SimulationMesh(FlatPattern &pattern);
|
|
SimulationMesh(ConstVCGEdgeMesh &edgeMesh);
|
|
SimulationMesh(SimulationMesh &elementalMesh);
|
|
void updateElementalLengths();
|
|
void setBeamCrossSection(const double &firstDimension,
|
|
const double &secondDimension);
|
|
void setBeamMaterial(const double &pr, const double &ym);
|
|
|
|
std::vector<VCGEdgeMesh::EdgePointer>
|
|
getIncidentElements(const VCGEdgeMesh::VertexType &v);
|
|
bool loadFromPly(const string &plyFilename);
|
|
std::vector<CrossSectionType> getBeamDimensions();
|
|
std::vector<ElementMaterial> getBeamMaterial();
|
|
|
|
double previousTotalKineticEnergy{0};
|
|
double previousTotalResidualForcesNorm{0};
|
|
double currentTotalKineticEnergy{0};
|
|
double totalResidualForcesNorm{0};
|
|
double totalPotentialEnergykN{0};
|
|
bool savePly(const std::string &plyFilename);
|
|
};
|
|
|
|
struct Element {
|
|
struct Properties {
|
|
CrossSectionType dimensions;
|
|
ElementMaterial material;
|
|
double E{0}; // youngs modulus in pascal
|
|
double G{0}; // shear modulus
|
|
double A{0}; // cross sectional area
|
|
double I2{0}; // second moment of inertia
|
|
double I3{0}; // third moment of inertia
|
|
double J{0}; // torsional constant (polar moment of inertia)
|
|
void computeMaterialProperties(const ElementMaterial &material);
|
|
void
|
|
computeDimensionsProperties(const RectangularBeamDimensions &dimensions);
|
|
void
|
|
computeDimensionsProperties(const CylindricalElementDimensions &dimensions);
|
|
void setDimensions(const CrossSectionType &dimensions);
|
|
void setMaterial(const ElementMaterial &material);
|
|
Properties(const CrossSectionType &dimensions,
|
|
const ElementMaterial &material);
|
|
Properties() {}
|
|
};
|
|
|
|
struct LocalFrame {
|
|
VectorType t1;
|
|
VectorType t2;
|
|
VectorType t3;
|
|
};
|
|
|
|
void updateConstFactors();
|
|
|
|
EdgeIndex ei;
|
|
double length{0};
|
|
Properties properties;
|
|
double initialLength;
|
|
LocalFrame frame;
|
|
double axialConstFactor;
|
|
double torsionConstFactor;
|
|
double firstBendingConstFactor;
|
|
double secondBendingConstFactor;
|
|
VectorType f1_j;
|
|
VectorType f1_jplus1;
|
|
VectorType f2_j;
|
|
VectorType f2_jplus1;
|
|
VectorType f3_j;
|
|
VectorType f3_jplus1;
|
|
double cosRotationAngle_j;
|
|
double cosRotationAngle_jplus1;
|
|
double sinRotationAngle_j;
|
|
double sinRotationAngle_jplus1;
|
|
std::vector<std::vector<VectorType>> derivativeT1;
|
|
std::vector<std::vector<VectorType>> derivativeT2;
|
|
std::vector<std::vector<VectorType>> derivativeT3;
|
|
std::vector<VectorType> derivativeT1_j;
|
|
std::vector<VectorType> derivativeT1_jplus1;
|
|
std::vector<VectorType> derivativeT2_j;
|
|
std::vector<VectorType> derivativeT2_jplus1;
|
|
std::vector<VectorType> derivativeT3_j;
|
|
std::vector<VectorType> derivativeT3_jplus1;
|
|
std::vector<VectorType> derivativeR_j;
|
|
std::vector<VectorType> derivativeR_jplus1;
|
|
struct RotationalDisplacements {
|
|
double theta1{0}, theta2{0}, theta3{0};
|
|
};
|
|
RotationalDisplacements rotationalDisplacements_j;
|
|
RotationalDisplacements rotationalDisplacements_jplus1;
|
|
};
|
|
|
|
struct Node {
|
|
struct Forces {
|
|
Vector6d external{0};
|
|
Vector6d internal{0};
|
|
Vector6d residual{0};
|
|
Vector6d internalAxial{0};
|
|
Vector6d internalFirstBending{0};
|
|
Vector6d internalSecondBending{0};
|
|
bool hasExternalForce() const { return external.isZero(); }
|
|
};
|
|
|
|
VertexIndex vi;
|
|
CoordType initialLocation;
|
|
CoordType previousLocation;
|
|
CoordType initialNormal;
|
|
double translationalMass;
|
|
double rotationalMass_I2;
|
|
double rotationalMass_I3;
|
|
double rotationalMass_J;
|
|
Vector6d acceleration{0};
|
|
Forces force;
|
|
Vector6d velocity{0};
|
|
double kineticEnergy{0};
|
|
Vector6d displacements{0};
|
|
double nR{0};
|
|
std::unordered_map<EdgeIndex, double>
|
|
alphaAngles; // contains the initial angles between the first star element
|
|
// incident to this node and the other elements of the star
|
|
// has size equal to the valence of the vertex
|
|
|
|
std::vector<VCGEdgeMesh::EdgePointer> incidentElements;
|
|
std::vector<VectorType> derivativeOfNormal;
|
|
SimulationMesh::EdgePointer referenceElement;
|
|
};
|
|
|
|
Element::LocalFrame computeElementFrame(const CoordType &p0,
|
|
const CoordType &p1,
|
|
const VectorType &elementNormal);
|
|
VectorType computeT1Vector(const ::SimulationMesh::EdgeType &e);
|
|
|
|
VectorType computeT1Vector(const CoordType &p0, const CoordType &p1);
|
|
double computeAngle(const VectorType &vector0, const VectorType &vector1,
|
|
const VectorType &normalVector);
|
|
|
|
#endif // ELEMENTALMESH_HPP
|