ReducedModelOptimization/src/reducedmodeloptimizer.cpp

1017 lines
47 KiB
C++

#include "reducedmodeloptimizer.hpp"
#include "linearsimulationmodel.hpp"
#include "simulationhistoryplotter.hpp"
#include "trianglepatterngeometry.hpp"
#include "trianglepattterntopology.hpp"
#include <chrono>
#include <dlib/global_optimization.h>
#include <dlib/optimization.h>
struct GlobalOptimizationVariables {
std::vector<Eigen::MatrixX3d> g_optimalReducedModelDisplacements;
std::vector<std::vector<Vector6d>> fullPatternDisplacements;
std::vector<double> objectiveNormalizationValues;
std::vector<std::shared_ptr<SimulationJob>> fullPatternSimulationJobs;
std::vector<std::shared_ptr<SimulationJob>> reducedPatternSimulationJobs;
std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
reducedToFullInterfaceViMap;
matplot::line_handle gPlotHandle;
std::vector<double> gObjectiveValueHistory;
Eigen::VectorXd g_initialParameters;
std::vector<ReducedModelOptimizer::SimulationScenario>
simulationScenarioIndices;
std::vector<VectorType> g_innerHexagonVectors{6, VectorType(0, 0, 0)};
double innerHexagonInitialRotationAngle{30};
double g_innerHexagonInitialPos{0};
double minY{DBL_MAX};
std::vector<double> minX;
int numOfSimulationCrashes{false};
int numberOfFunctionCalls{0};
int numberOfOptimizationParameters{5};
ReducedModelOptimizer::Settings optimizationSettings;
} global;
std::vector<SimulationJob> reducedPatternMaximumDisplacementSimulationJobs;
double ReducedModelOptimizer::computeError(
const std::vector<Vector6d> &reducedPatternDisplacements,
const std::vector<Vector6d> &fullPatternDisplacements,
const std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
&reducedToFullInterfaceViMap,
const double &normalizationFactor) {
const double rawError =
computeRawError(reducedPatternDisplacements, fullPatternDisplacements,
reducedToFullInterfaceViMap);
if (global.optimizationSettings.normalizationStrategy !=
Settings::NormalizationStrategy::NonNormalized) {
return rawError / normalizationFactor;
}
return rawError;
}
double ReducedModelOptimizer::computeRawError(
const std::vector<Vector6d> &reducedPatternDisplacements,
const std::vector<Vector6d> &fullPatternDisplacements,
const std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
&reducedToFullInterfaceViMap) {
double error = 0;
for (const auto reducedFullViPair : reducedToFullInterfaceViMap) {
const VertexIndex reducedModelVi = reducedFullViPair.first;
Eigen::Vector3d reducedVertexDisplacement(
reducedPatternDisplacements[reducedModelVi][0],
reducedPatternDisplacements[reducedModelVi][1],
reducedPatternDisplacements[reducedModelVi][2]);
if (!std::isfinite(reducedVertexDisplacement[0]) ||
!std::isfinite(reducedVertexDisplacement[1]) ||
!std::isfinite(reducedVertexDisplacement[2])) {
std::cout << "Displacements are not finite" << std::endl;
std::terminate();
}
const VertexIndex fullModelVi = reducedFullViPair.second;
Eigen::Vector3d fullVertexDisplacement(
fullPatternDisplacements[fullModelVi][0],
fullPatternDisplacements[fullModelVi][1],
fullPatternDisplacements[fullModelVi][2]);
Eigen::Vector3d errorVector =
fullVertexDisplacement - reducedVertexDisplacement;
// error += errorVector.squaredNorm();
error += errorVector.norm();
}
return error;
}
void updateMesh(long n, const double *x) {
std::shared_ptr<SimulationMesh> &pReducedPatternSimulationMesh =
global.reducedPatternSimulationJobs[global.simulationScenarioIndices[0]]
->pMesh;
// const Element &elem = g_reducedPatternSimulationJob[0]->mesh->elements[0];
// std::cout << elem.axialConstFactor << " " << elem.torsionConstFactor << "
// "
// << elem.firstBendingConstFactor << " "
// << elem.secondBendingConstFactor << std::endl;
for (EdgeIndex ei = 0; ei < pReducedPatternSimulationMesh->EN(); ei++) {
Element &e = pReducedPatternSimulationMesh->elements[ei];
// if (g_reducedPatternExludedEdges.contains(ei)) {
// continue;
// }
// e.properties.E = g_initialParameters * x[ei];
// e.properties.E = g_initialParameters(0) * x[0];
// e.properties.G = g_initialParameters(1) * x[1];
e.setDimensions(
RectangularBeamDimensions(global.g_initialParameters(0) * x[0],
global.g_initialParameters(0) * x[0] /
(global.g_initialParameters(1) * x[1])));
e.setMaterial(ElementMaterial(e.material.poissonsRatio,
global.g_initialParameters(2) * x[2]));
// e.properties.A = g_initialParameters(0) * x[0];
// e.properties.J = g_initialParameters(1) * x[1];
// e.properties.I2 = g_initialParameters(2) * x[2];
// e.properties.I3 = g_initialParameters(3) * x[3];
// e.properties.G = e.properties.E / (2 * (1 + 0.3));
// e.axialConstFactor = e.properties.E * e.properties.A /
// e.initialLength; e.torsionConstFactor = e.properties.G *
// e.properties.J / e.initialLength; e.firstBendingConstFactor =
// 2 * e.properties.E * e.properties.I2 / e.initialLength;
// e.secondBendingConstFactor =
// 2 * e.properties.E * e.properties.I3 / e.initialLength;
}
// std::cout << elem.axialConstFactor << " " << elem.torsionConstFactor << "
// "
// << elem.firstBendingConstFactor << " "
// << elem.secondBendingConstFactor << std::endl;
// const Element &e = pReducedPatternSimulationMesh->elements[0];
// std::cout << e.axialConstFactor << " " << e.torsionConstFactor << " "
// << e.firstBendingConstFactor << " " <<
// e.secondBendingConstFactor
// << std::endl;
assert(pReducedPatternSimulationMesh->EN() == 12);
auto R = vcg::RotationMatrix(
ReducedModelOptimizer::patternPlaneNormal,
vcg::math::ToRad(x[4] - global.innerHexagonInitialRotationAngle));
// for (VertexIndex vi = 0; vi < pReducedPatternSimulationMesh->VN();
// vi += 2) {
for (int rotationCounter = 0;
rotationCounter < ReducedModelOptimizer::fanSize; rotationCounter++) {
pReducedPatternSimulationMesh->vert[2 * rotationCounter].P() =
R * global.g_innerHexagonVectors[rotationCounter] * x[3];
}
pReducedPatternSimulationMesh->reset();
#ifdef POLYSCOPE_DEFINED
pReducedPatternSimulationMesh->updateEigenEdgeAndVertices();
#endif
}
double ReducedModelOptimizer::objective(double b, double r, double E) {
std::vector<double> x{b, r, E};
return ReducedModelOptimizer::objective(x.size(), x.data());
}
double ReducedModelOptimizer::objective(double b, double h, double E,
double innerHexagonSize,
double innerHexagonRotationAngle) {
std::vector<double> x{b, h, E, innerHexagonSize, innerHexagonRotationAngle};
return ReducedModelOptimizer::objective(x.size(), x.data());
}
double ReducedModelOptimizer::objective(long n, const double *x) {
// std::cout.precision(17);
// const Element &e =
// global.reducedPatternSimulationJobs[0]->pMesh->elements[0]; std::cout <<
// e.axialConstFactor << " " << e.torsionConstFactor << " "
// << e.firstBendingConstFactor << " " <<
// e.secondBendingConstFactor
// << std::endl;
updateMesh(n, x);
// std::cout << e.axialConstFactor << " " << e.torsionConstFactor << " "
// << e.firstBendingConstFactor << " " <<
// e.secondBendingConstFactor
// << std::endl;
// run simulations
double totalError = 0;
// LinearSimulationModel simulator;
FormFinder simulator;
for (const int simulationScenarioIndex : global.simulationScenarioIndices) {
SimulationResults reducedModelResults = simulator.executeSimulation(
global.reducedPatternSimulationJobs[simulationScenarioIndex]);
//#ifdef POLYSCOPE_DEFINED
// global.reducedPatternSimulationJobs[simulationScenarioIndex]
// ->pMesh->registerForDrawing(colors.reducedInitial);
// reducedModelResults.registerForDrawing(colors.reducedDeformed);
// polyscope::show();
// reducedModelResults.unregister();
//#endif
// std::string filename;
if (!reducedModelResults.converged) {
totalError += std::numeric_limits<double>::max();
global.numOfSimulationCrashes++;
#ifdef POLYSCOPE_DEFINED
std::cout << "Failed simulation" << std::endl;
#endif
} else {
double simulationScenarioError = computeError(
reducedModelResults.displacements,
global.fullPatternDisplacements[simulationScenarioIndex],
global.reducedToFullInterfaceViMap,
global.objectiveNormalizationValues[simulationScenarioIndex]);
// if (global.optimizationSettings.normalizationStrategy !=
// NormalizationStrategy::Epsilon &&
// simulationScenarioError > 1) {
// std::cout << "Simulation scenario "
// <<
// simulationScenarioStrings[simulationScenarioIndex]
// << " results in an error bigger than one." <<
// std::endl;
// for (size_t parameterIndex = 0; parameterIndex < n;
// parameterIndex++) {
// std::cout << "x[" + std::to_string(parameterIndex) + "]="
// << x[parameterIndex] << std::endl;
// }
// }
//#ifdef POLYSCOPE_DEFINED
// ReducedModelOptimizer::visualizeResults(
// global.fullPatternSimulationJobs[simulationScenarioIndex],
// global.reducedPatternSimulationJobs[simulationScenarioIndex],
// global.reducedToFullInterfaceViMap, false);
// ReducedModelOptimizer::visualizeResults(
// global.fullPatternSimulationJobs[simulationScenarioIndex],
// std::make_shared<SimulationJob>(
// reducedPatternMaximumDisplacementSimulationJobs
// [simulationScenarioIndex]),
// global.reducedToFullInterfaceViMap, true);
// polyscope::removeAllStructures();
//#endif // POLYSCOPE_DEFINED
totalError += simulationScenarioError;
}
}
// std::cout << error << std::endl;
if (totalError < global.minY) {
global.minY = totalError;
global.minX.assign(x, x + n);
}
#ifdef POLYSCOPE_DEFINED
if (++global.numberOfFunctionCalls % 100 == 0) {
std::cout << "Number of function calls:" << global.numberOfFunctionCalls
<< std::endl;
}
#endif
// compute error and return it
// global.gObjectiveValueHistory.push_back(error);
// auto xPlot = matplot::linspace(0, gObjectiveValueHistory.size(),
// gObjectiveValueHistory.size());
// std::vector<double> colors(gObjectiveValueHistory.size(), 2);
// if (g_firstRoundIterationIndex != 0) {
// for_each(colors.begin() + g_firstRoundIterationIndex, colors.end(),
// [](double &c) { c = 0.7; });
// }
// gPlotHandle = matplot::scatter(xPlot, gObjectiveValueHistory, 6, colors);
// SimulationResultsReporter::createPlot("Number of Steps", "Objective
// value",
// gObjectiveValueHistory);
return totalError;
}
void ReducedModelOptimizer::createSimulationMeshes(
PatternGeometry &fullModel, PatternGeometry &reducedModel,
std::shared_ptr<SimulationMesh> &pFullPatternSimulationMesh,
std::shared_ptr<SimulationMesh> &pReducedPatternSimulationMesh) {
if (typeid(CrossSectionType) != typeid(RectangularBeamDimensions)) {
std::cerr << "Error: A rectangular cross section is expected." << std::endl;
terminate();
}
// Full pattern
pFullPatternSimulationMesh = std::make_shared<SimulationMesh>(fullModel);
pFullPatternSimulationMesh->setBeamCrossSection(
CrossSectionType{0.002, 0.002});
pFullPatternSimulationMesh->setBeamMaterial(0.3, 1 * 1e9);
// Reduced pattern
pReducedPatternSimulationMesh =
std::make_shared<SimulationMesh>(reducedModel);
pReducedPatternSimulationMesh->setBeamCrossSection(
CrossSectionType{0.002, 0.002});
pReducedPatternSimulationMesh->setBeamMaterial(0.3, 1 * 1e9);
}
void ReducedModelOptimizer::createSimulationMeshes(
PatternGeometry &fullModel, PatternGeometry &reducedModel) {
ReducedModelOptimizer::createSimulationMeshes(
fullModel, reducedModel, m_pFullPatternSimulationMesh,
m_pReducedPatternSimulationMesh);
}
void ReducedModelOptimizer::computeMaps(
const std::unordered_set<size_t> &reducedModelExcludedEdges,
const std::unordered_map<size_t, std::unordered_set<size_t>> &slotToNode,
PatternGeometry &fullPattern, PatternGeometry &reducedPattern,
std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
&reducedToFullInterfaceViMap,
std::unordered_map<FullPatternVertexIndex, ReducedPatternVertexIndex>
&fullToReducedInterfaceViMap,
std::unordered_map<FullPatternVertexIndex, ReducedPatternVertexIndex>
&fullPatternOppositeInterfaceViMap) {
// Compute the offset between the interface nodes
const size_t interfaceSlotIndex = 4; // bottom edge
assert(slotToNode.find(interfaceSlotIndex) != slotToNode.end() &&
slotToNode.find(interfaceSlotIndex)->second.size() == 1);
// Assuming that in the bottom edge there is only one vertex which is also the
// interface
const size_t baseTriangleInterfaceVi =
*(slotToNode.find(interfaceSlotIndex)->second.begin());
vcg::tri::Allocator<PatternGeometry>::PointerUpdater<
PatternGeometry::VertexPointer>
pu_fullModel;
fullPattern.deleteDanglingVertices(pu_fullModel);
const size_t fullModelBaseTriangleInterfaceVi =
pu_fullModel.remap.empty() ? baseTriangleInterfaceVi
: pu_fullModel.remap[baseTriangleInterfaceVi];
const size_t fullModelBaseTriangleVN = fullPattern.VN();
fullPattern.createFan();
const size_t duplicateVerticesPerFanPair =
fullModelBaseTriangleVN - fullPattern.VN() / 6;
const size_t fullPatternInterfaceVertexOffset =
fullModelBaseTriangleVN - duplicateVerticesPerFanPair;
// std::cout << "Dups in fan pair:" << duplicateVerticesPerFanPair <<
// std::endl;
// Save excluded edges TODO:this changes the global object. Should this be a
// function parameter?
// global.reducedPatternExludedEdges.clear();
// const size_t reducedBaseTriangleNumberOfEdges = reducedPattern.EN();
// for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) {
// for (const size_t ei : reducedModelExcludedEdges) {
// global.reducedPatternExludedEdges.insert(
// fanIndex * reducedBaseTriangleNumberOfEdges + ei);
// }
// }
// Construct reduced->full and full->reduced interface vi map
reducedToFullInterfaceViMap.clear();
vcg::tri::Allocator<PatternGeometry>::PointerUpdater<
PatternGeometry::VertexPointer>
pu_reducedModel;
reducedPattern.deleteDanglingVertices(pu_reducedModel);
const size_t reducedModelBaseTriangleInterfaceVi =
pu_reducedModel.remap[baseTriangleInterfaceVi];
const size_t reducedModelInterfaceVertexOffset =
reducedPattern.VN() - 1 /*- reducedModelBaseTriangleInterfaceVi*/;
reducedPattern.createFan();
for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) {
reducedToFullInterfaceViMap[reducedModelInterfaceVertexOffset * fanIndex +
reducedModelBaseTriangleInterfaceVi] =
fullModelBaseTriangleInterfaceVi +
fanIndex * fullPatternInterfaceVertexOffset;
}
fullToReducedInterfaceViMap.clear();
constructInverseMap(reducedToFullInterfaceViMap, fullToReducedInterfaceViMap);
// Create opposite vertex map
fullPatternOppositeInterfaceViMap.clear();
for (int fanIndex = fanSize / 2 - 1; fanIndex >= 0; fanIndex--) {
const size_t vi0 = fullModelBaseTriangleInterfaceVi +
fanIndex * fullPatternInterfaceVertexOffset;
const size_t vi1 = vi0 + (fanSize / 2) * fullPatternInterfaceVertexOffset;
assert(vi0 < fullPattern.VN() && vi1 < fullPattern.VN());
fullPatternOppositeInterfaceViMap[vi0] = vi1;
}
const bool debugMapping = false;
if (debugMapping) {
#if POLYSCOPE_DEFINED
reducedPattern.registerForDrawing();
// std::vector<glm::vec3> colors_reducedPatternExcludedEdges(
// reducedPattern.EN(), glm::vec3(0, 0, 0));
// for (const size_t ei : global.reducedPatternExludedEdges) {
// colors_reducedPatternExcludedEdges[ei] = glm::vec3(1, 0, 0);
// }
// const std::string label = reducedPattern.getLabel();
// polyscope::getCurveNetwork(label)
// ->addEdgeColorQuantity("Excluded edges",
// colors_reducedPatternExcludedEdges)
// ->setEnabled(true);
// polyscope::show();
std::vector<glm::vec3> nodeColorsOpposite(fullPattern.VN(),
glm::vec3(0, 0, 0));
for (const std::pair<size_t, size_t> oppositeVerts :
fullPatternOppositeInterfaceViMap) {
auto color = polyscope::getNextUniqueColor();
nodeColorsOpposite[oppositeVerts.first] = color;
nodeColorsOpposite[oppositeVerts.second] = color;
}
fullPattern.registerForDrawing();
polyscope::getCurveNetwork(fullPattern.getLabel())
->addNodeColorQuantity("oppositeMap", nodeColorsOpposite)
->setEnabled(true);
polyscope::show();
std::vector<glm::vec3> nodeColorsReducedToFull_reduced(reducedPattern.VN(),
glm::vec3(0, 0, 0));
std::vector<glm::vec3> nodeColorsReducedToFull_full(fullPattern.VN(),
glm::vec3(0, 0, 0));
for (size_t vi = 0; vi < reducedPattern.VN(); vi++) {
if (global.reducedToFullInterfaceViMap.contains(vi)) {
auto color = polyscope::getNextUniqueColor();
nodeColorsReducedToFull_reduced[vi] = color;
nodeColorsReducedToFull_full[global.reducedToFullInterfaceViMap[vi]] =
color;
}
}
polyscope::getCurveNetwork(reducedPattern.getLabel())
->addNodeColorQuantity("reducedToFull_reduced",
nodeColorsReducedToFull_reduced)
->setEnabled(true);
polyscope::getCurveNetwork(fullPattern.getLabel())
->addNodeColorQuantity("reducedToFull_full",
nodeColorsReducedToFull_full)
->setEnabled(true);
polyscope::show();
#endif
}
}
void ReducedModelOptimizer::computeMaps(
PatternGeometry &fullPattern, PatternGeometry &reducedPattern,
const std::unordered_set<size_t> &reducedModelExcludedEdges) {
ReducedModelOptimizer::computeMaps(
reducedModelExcludedEdges, slotToNode, fullPattern, reducedPattern,
global.reducedToFullInterfaceViMap, m_fullToReducedInterfaceViMap,
m_fullPatternOppositeInterfaceViMap);
}
ReducedModelOptimizer::ReducedModelOptimizer(
const std::vector<size_t> &numberOfNodesPerSlot) {
FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlot);
FlatPatternTopology::constructSlotToNodeMap(nodeToSlot, slotToNode);
}
void ReducedModelOptimizer::initializePatterns(
PatternGeometry &fullPattern, PatternGeometry &reducedPattern,
const std::unordered_set<size_t> &reducedModelExcludedEdges) {
// fullPattern.setLabel("full_pattern_" + fullPattern.getLabel());
// reducedPattern.setLabel("reduced_pattern_" + reducedPattern.getLabel());
assert(fullPattern.VN() == reducedPattern.VN() &&
fullPattern.EN() >= reducedPattern.EN());
#if POLYSCOPE_DEFINED
polyscope::removeAllStructures();
#endif
// Create copies of the input models
PatternGeometry copyFullPattern;
PatternGeometry copyReducedPattern;
copyFullPattern.copy(fullPattern);
copyReducedPattern.copy(reducedPattern);
/*
* Here we create the vector that connects the central node with the bottom
* left node of the base triangle. During the optimization the vi%2==0 nodes
* move on these vectors.
* */
const double h = copyReducedPattern.getBaseTriangleHeight();
double baseTriangle_bottomEdgeSize = 2 * h / tan(vcg::math::ToRad(60.0));
VectorType baseTriangle_leftBottomNode(-baseTriangle_bottomEdgeSize / 2, -h,
0);
for (int rotationCounter = 0; rotationCounter < fanSize; rotationCounter++) {
VectorType rotatedVector =
vcg::RotationMatrix(patternPlaneNormal,
vcg::math::ToRad(rotationCounter * 60.0)) *
baseTriangle_leftBottomNode;
global.g_innerHexagonVectors[rotationCounter] = rotatedVector;
}
const double innerHexagonInitialPos_x =
copyReducedPattern.vert[0].cP()[0] / global.g_innerHexagonVectors[0][0];
const double innerHexagonInitialPos_y =
copyReducedPattern.vert[0].cP()[1] / global.g_innerHexagonVectors[0][1];
global.g_innerHexagonInitialPos = innerHexagonInitialPos_x;
global.innerHexagonInitialRotationAngle =
30; /* NOTE: Here I assume that the CW reduced pattern is given as input.
This is not very generic */
computeMaps(copyFullPattern, copyReducedPattern, reducedModelExcludedEdges);
createSimulationMeshes(copyFullPattern, copyReducedPattern);
initializeOptimizationParameters(m_pReducedPatternSimulationMesh);
}
void ReducedModelOptimizer::initializeOptimizationParameters(
const std::shared_ptr<SimulationMesh> &mesh) {
global.numberOfOptimizationParameters = 5;
global.g_initialParameters.resize(global.numberOfOptimizationParameters);
// Save save the beam stiffnesses
// for (size_t ei = 0; ei < pReducedModelElementalMesh->EN(); ei++) {
// Element &e = pReducedModelElementalMesh->elements[ei];
// if (g_reducedPatternExludedEdges.contains(ei)) {
// const double stiffnessFactor = 5;
// e.axialConstFactor *= stiffnessFactor;
// e.torsionConstFactor *= stiffnessFactor;
// e.firstBendingConstFactor *= stiffnessFactor;
// e.secondBendingConstFactor *= stiffnessFactor;
// }
const double initialB = std::sqrt(mesh->elements[0].A);
const double initialRatio = 1;
global.g_initialParameters(0) = initialB;
global.g_initialParameters(1) = initialRatio;
global.g_initialParameters(2) = mesh->elements[0].material.youngsModulus;
global.g_initialParameters(3) = global.g_innerHexagonInitialPos;
global.innerHexagonInitialRotationAngle = 30;
global.g_initialParameters(4) = global.innerHexagonInitialRotationAngle;
// g_initialParameters =
// m_pReducedPatternSimulationMesh->elements[0].properties.E;
// for (size_t ei = 0; ei < m_pReducedPatternSimulationMesh->EN(); ei++) {
// }
// g_initialParameters(0) = mesh->elements[0].properties.E;
// g_initialParameters(1) = mesh->elements[0].properties.G;
// g_initialParameters(0) = mesh->elements[0].properties.A;
// g_initialParameters(1) = mesh->elements[0].properties.J;
// g_initialParameters(2) = mesh->elements[0].properties.I2;
// g_initialParameters(3) = mesh->elements[0].properties.I3;
// }
}
void ReducedModelOptimizer::computeReducedModelSimulationJob(
const SimulationJob &simulationJobOfFullModel,
const std::unordered_map<size_t, size_t> &simulationJobFullToReducedMap,
SimulationJob &simulationJobOfReducedModel) {
assert(simulationJobOfReducedModel.pMesh->VN() != 0);
std::unordered_map<VertexIndex, std::unordered_set<DoFType>>
reducedModelFixedVertices;
for (auto fullModelFixedVertex :
simulationJobOfFullModel.constrainedVertices) {
reducedModelFixedVertices[simulationJobFullToReducedMap.at(
fullModelFixedVertex.first)] = fullModelFixedVertex.second;
}
std::unordered_map<VertexIndex, Vector6d> reducedModelNodalForces;
for (auto fullModelNodalForce :
simulationJobOfFullModel.nodalExternalForces) {
reducedModelNodalForces[simulationJobFullToReducedMap.at(
fullModelNodalForce.first)] = fullModelNodalForce.second;
}
// std::unordered_map<VertexIndex, VectorType>
// reducedModelNodalForcedNormals; for (auto fullModelNodalForcedRotation :
// simulationJobOfFullModel.nodalForcedNormals) {
// reducedModelNodalForcedNormals[simulationJobFullToReducedMap.at(
// fullModelNodalForcedRotation.first)] =
// fullModelNodalForcedRotation.second;
// }
simulationJobOfReducedModel.constrainedVertices = reducedModelFixedVertices;
simulationJobOfReducedModel.nodalExternalForces = reducedModelNodalForces;
simulationJobOfReducedModel.label = simulationJobOfFullModel.getLabel();
// simulationJobOfReducedModel.nodalForcedNormals =
// reducedModelNodalForcedNormals;
}
#if POLYSCOPE_DEFINED
void ReducedModelOptimizer::visualizeResults(
const std::vector<std::shared_ptr<SimulationJob>>
&fullPatternSimulationJobs,
const std::vector<std::shared_ptr<SimulationJob>>
&reducedPatternSimulationJobs,
const std::vector<SimulationScenario> &simulationScenarios,
const std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
&reducedToFullInterfaceViMap) {
FormFinder simulator;
std::shared_ptr<SimulationMesh> pFullPatternSimulationMesh =
fullPatternSimulationJobs[0]->pMesh;
pFullPatternSimulationMesh->registerForDrawing();
pFullPatternSimulationMesh->savePly(pFullPatternSimulationMesh->getLabel() +
"_undeformed.ply");
reducedPatternSimulationJobs[0]->pMesh->savePly(
reducedPatternSimulationJobs[0]->pMesh->getLabel() + "_undeformed.ply");
double totalError = 0;
for (const int simulationScenarioIndex : simulationScenarios) {
const std::shared_ptr<SimulationJob> &pFullPatternSimulationJob =
fullPatternSimulationJobs[simulationScenarioIndex];
pFullPatternSimulationJob->registerForDrawing(
pFullPatternSimulationMesh->getLabel());
SimulationResults fullModelResults =
simulator.executeSimulation(pFullPatternSimulationJob);
fullModelResults.registerForDrawing();
// fullModelResults.saveDeformedModel();
const std::shared_ptr<SimulationJob> &pReducedPatternSimulationJob =
reducedPatternSimulationJobs[simulationScenarioIndex];
SimulationResults reducedModelResults =
simulator.executeSimulation(pReducedPatternSimulationJob);
double normalizationFactor = 1;
if (global.optimizationSettings.normalizationStrategy !=
Settings::NormalizationStrategy::NonNormalized) {
normalizationFactor =
global.objectiveNormalizationValues[simulationScenarioIndex];
}
reducedModelResults.saveDeformedModel();
fullModelResults.saveDeformedModel();
double error = computeError(
reducedModelResults.displacements, fullModelResults.displacements,
reducedToFullInterfaceViMap, normalizationFactor);
std::cout << "Error of simulation scenario "
<< simulationScenarioStrings[simulationScenarioIndex] << " is "
<< error << std::endl;
totalError += error;
reducedModelResults.registerForDrawing();
// firstOptimizationRoundResults[simulationScenarioIndex].registerForDrawing();
// registerWorldAxes();
const std::string screenshotFilename =
"/home/iason/Coding/Projects/Approximating shapes with flat "
"patterns/RodModelOptimizationForPatterns/build/OptimizationResults/"
"Images/" +
pFullPatternSimulationMesh->getLabel() + "_" +
simulationScenarioStrings[simulationScenarioIndex];
polyscope::show();
polyscope::screenshot(screenshotFilename, false);
fullModelResults.unregister();
reducedModelResults.unregister();
// firstOptimizationRoundResults[simulationScenarioIndex].unregister();
}
std::cout << "Total error:" << totalError << std::endl;
}
void ReducedModelOptimizer::registerResultsForDrawing(
const std::shared_ptr<SimulationJob> &pFullPatternSimulationJob,
const std::shared_ptr<SimulationJob> &pReducedPatternSimulationJob,
const std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
&reducedToFullInterfaceViMap) {
FormFinder simulator;
std::shared_ptr<SimulationMesh> pFullPatternSimulationMesh =
pFullPatternSimulationJob->pMesh;
pFullPatternSimulationMesh->registerForDrawing();
// pFullPatternSimulationMesh->savePly(pFullPatternSimulationMesh->getLabel()
// +
// "_undeformed.ply");
// reducedPatternSimulationJobs[0]->pMesh->savePly(
// reducedPatternSimulationJobs[0]->pMesh->getLabel() +
// "_undeformed.ply");
pFullPatternSimulationJob->registerForDrawing(
pFullPatternSimulationMesh->getLabel());
SimulationResults fullModelResults =
simulator.executeSimulation(pFullPatternSimulationJob);
fullModelResults.registerForDrawing();
// fullModelResults.saveDeformedModel();
SimulationResults reducedModelResults =
simulator.executeSimulation(pReducedPatternSimulationJob);
// reducedModelResults.saveDeformedModel();
// fullModelResults.saveDeformedModel();
double error = computeRawError(
reducedModelResults.displacements, fullModelResults.displacements,
reducedToFullInterfaceViMap/*,
global.reducedPatternMaximumDisplacementNormSum[simulationScenarioIndex]*/);
std::cout << "Error is " << error << std::endl;
reducedModelResults.registerForDrawing();
}
#endif // POLYSCOPE_DEFINED
void ReducedModelOptimizer::computeDesiredReducedModelDisplacements(
const SimulationResults &fullModelResults,
const std::unordered_map<size_t, size_t> &displacementsReducedToFullMap,
Eigen::MatrixX3d &optimalDisplacementsOfReducedModel) {
assert(optimalDisplacementsOfReducedModel.rows() != 0 &&
optimalDisplacementsOfReducedModel.cols() == 3);
optimalDisplacementsOfReducedModel.setZero(
optimalDisplacementsOfReducedModel.rows(),
optimalDisplacementsOfReducedModel.cols());
for (auto reducedFullViPair : displacementsReducedToFullMap) {
const VertexIndex fullModelVi = reducedFullViPair.second;
const Vector6d fullModelViDisplacements =
fullModelResults.displacements[fullModelVi];
optimalDisplacementsOfReducedModel.row(reducedFullViPair.first) =
Eigen::Vector3d(fullModelViDisplacements[0],
fullModelViDisplacements[1],
fullModelViDisplacements[2]);
}
}
ReducedModelOptimizer::Results
ReducedModelOptimizer::runOptimization(const Settings &settings) {
global.gObjectiveValueHistory.clear();
dlib::matrix<double, 0, 1> xMin(global.numberOfOptimizationParameters);
dlib::matrix<double, 0, 1> xMax(global.numberOfOptimizationParameters);
for (int i = 0; i < global.numberOfOptimizationParameters; i++) {
xMin(i) = settings.xRanges[i].min;
xMax(i) = settings.xRanges[i].max;
}
auto start = std::chrono::system_clock::now();
dlib::function_evaluation result;
double (*objF)(double, double, double, double, double) = &objective;
result = dlib::find_min_global(
objF, xMin, xMax,
dlib::max_function_calls(settings.numberOfFunctionCalls),
std::chrono::hours(24 * 365 * 290), settings.solutionAccuracy);
auto end = std::chrono::system_clock::now();
auto elapsed =
std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
Results results;
results.numberOfSimulationCrashes = global.numOfSimulationCrashes;
results.x = global.minX;
results.objectiveValue = global.minY;
if (global.minY != result.y) {
std::cerr << "Global min objective is not equal to result objective"
<< std::endl;
}
// Compute obj value per simulation scenario
results.rawObjectiveValue=0;
updateMesh(results.x.size(), results.x.data());
results.objectiveValuePerSimulationScenario.resize(
NumberOfSimulationScenarios);
FormFinder::Settings simulationSettings;
FormFinder simulator;
for (int simulationScenarioIndex = 0;
simulationScenarioIndex < NumberOfSimulationScenarios;
simulationScenarioIndex++) {
SimulationResults reducedModelResults = simulator.executeSimulation(
global.reducedPatternSimulationJobs[simulationScenarioIndex],
simulationSettings);
const double error = computeError(
reducedModelResults.displacements,
global.fullPatternDisplacements[simulationScenarioIndex],
global.reducedToFullInterfaceViMap,
global.objectiveNormalizationValues[simulationScenarioIndex]);
results.rawObjectiveValue+=computeRawError(reducedModelResults.displacements,
global.fullPatternDisplacements[simulationScenarioIndex],
global.reducedToFullInterfaceViMap);
results.objectiveValuePerSimulationScenario[simulationScenarioIndex] =
error;
}
// if (result.y !=
// std::accumulate(results.objectiveValuePerSimulationScenario.begin(),
// results.objectiveValuePerSimulationScenario.end(), 0))
// {
// std::cerr
// << "Sum of per scenario objectives is not equal to result objective"
// << std::endl;
// }
results.time = elapsed.count() / 1000.0;
const bool printDebugInfo = false;
if (printDebugInfo) {
std::cout << "Finished optimizing." << endl;
// std::cout << "Solution x:" << endl;
// std::cout << result.x << endl;
std::cout << "Objective value:" << global.minY << endl;
}
return results;
}
std::vector<std::shared_ptr<SimulationJob>>
ReducedModelOptimizer::createScenarios(
const std::shared_ptr<SimulationMesh> &pMesh) {
std::vector<std::shared_ptr<SimulationJob>> scenarios;
scenarios.resize(SimulationScenario::NumberOfSimulationScenarios);
std::unordered_map<VertexIndex, std::unordered_set<DoFType>> fixedVertices;
std::unordered_map<VertexIndex, Vector6d> nodalForces;
const double forceMagnitude = 10;
//// Axial
SimulationScenario scenarioName = SimulationScenario::Axial;
// NewMethod
for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin();
viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) {
if (viPairIt != m_fullPatternOppositeInterfaceViMap.begin()) {
CoordType forceDirection(1, 0, 0);
const auto viPair = *viPairIt;
nodalForces[viPair.first] =
Vector6d({forceDirection[0], forceDirection[1], forceDirection[2], 0,
0, 0}) *
forceMagnitude * 8;
fixedVertices[viPair.second] =
std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
}
}
// OldMethod
// for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
// CoordType forceDirection =
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
// .Normalize();
// nodalForces[viPair.first] = Vector6d({forceDirection[0],
// forceDirection[1],
// forceDirection[2], 0, 0, 0}) *
// forceMagnitude * 10;
// fixedVertices[viPair.second] =
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
// }
scenarios[scenarioName] = std::make_shared<SimulationJob>(
SimulationJob(pMesh, simulationScenarioStrings[scenarioName],
fixedVertices, nodalForces, {}));
//// Shear
scenarioName = SimulationScenario::Shear;
fixedVertices.clear();
nodalForces.clear();
// NewMethod
for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin();
viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) {
if (viPairIt != m_fullPatternOppositeInterfaceViMap.begin()) {
CoordType forceDirection(0, 1, 0);
const auto viPair = *viPairIt;
nodalForces[viPair.first] =
Vector6d({forceDirection[0], forceDirection[1], forceDirection[2], 0,
0, 0}) *
forceMagnitude * 8;
fixedVertices[viPair.second] =
std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
}
}
// OldMethod
// for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
// CoordType v =
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
// .Normalize();
// CoordType forceDirection = (v ^ patternPlaneNormal).Normalize();
// nodalForces[viPair.first] = Vector6d({forceDirection[0],
// forceDirection[1],
// forceDirection[2], 0, 0, 0}) *
// 0.40 * forceMagnitude;
// fixedVertices[viPair.second] =
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
// }
scenarios[scenarioName] = std::make_shared<SimulationJob>(
SimulationJob(pMesh, simulationScenarioStrings[scenarioName],
fixedVertices, nodalForces, {}));
// //// Torsion
// fixedVertices.clear();
// nodalForces.clear();
// for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin();
// viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) {
// const auto &viPair = *viPairIt;
// if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) {
// CoordType v =
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
// .Normalize();
// CoordType normalVDerivativeDir = (v ^ patternPlaneNormal).Normalize();
// nodalForces[viPair.first] = Vector6d{
// 0, 0, 0, normalVDerivativeDir[0], normalVDerivativeDir[1], 0};
// fixedVertices[viPair.second] =
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
// fixedVertices[viPair.first] = std::unordered_set<DoFType>{0, 1, 2};
// } else {
// fixedVertices[viPair.first] = std::unordered_set<DoFType>{0, 1, 2};
// fixedVertices[viPair.second] = std::unordered_set<DoFType>{0, 1, 2};
// }
// }
// scenarios.push_back({pMesh, fixedVertices, nodalForces});
//// Bending
scenarioName = SimulationScenario::Bending;
fixedVertices.clear();
nodalForces.clear();
for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
nodalForces[viPair.first] = Vector6d({0, 0, forceMagnitude, 0, 0, 0}) * 1;
fixedVertices[viPair.second] =
std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
}
scenarios[scenarioName] = std::make_shared<SimulationJob>(
SimulationJob(pMesh, simulationScenarioStrings[scenarioName],
fixedVertices, nodalForces, {}));
//// Double using moments
scenarioName = SimulationScenario::Dome;
fixedVertices.clear();
nodalForces.clear();
for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin();
viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) {
const auto viPair = *viPairIt;
if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) {
fixedVertices[viPair.first] = std::unordered_set<DoFType>{0, 1, 2};
fixedVertices[viPair.second] = std::unordered_set<DoFType>{0, 2};
} else {
fixedVertices[viPair.first] = std::unordered_set<DoFType>{2};
fixedVertices[viPair.second] = std::unordered_set<DoFType>{2};
}
CoordType v =
(pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) ^
CoordType(0, 0, -1).Normalize();
nodalForces[viPair.first] =
Vector6d({0, 0, 0, v[0], v[1], 0}) * forceMagnitude * 1;
nodalForces[viPair.second] =
Vector6d({0, 0, 0, -v[0], -v[1], 0}) * forceMagnitude * 1;
}
scenarios[scenarioName] = std::make_shared<SimulationJob>(
SimulationJob(pMesh, simulationScenarioStrings[scenarioName],
fixedVertices, nodalForces, {}));
//// Saddle
scenarioName = SimulationScenario::Saddle;
fixedVertices.clear();
nodalForces.clear();
for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin();
viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) {
const auto &viPair = *viPairIt;
CoordType v =
(pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) ^
CoordType(0, 0, -1).Normalize();
if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) {
nodalForces[viPair.first] =
Vector6d({0, 0, 0, v[0], v[1], 0}) * 0.2 * forceMagnitude;
nodalForces[viPair.second] =
Vector6d({0, 0, 0, -v[0], -v[1], 0}) * 0.2 * forceMagnitude;
} else {
fixedVertices[viPair.first] = std::unordered_set<DoFType>{2};
fixedVertices[viPair.second] = std::unordered_set<DoFType>{0, 1, 2};
nodalForces[viPair.first] =
Vector6d({0, 0, 0, -v[0], -v[1], 0}) * 0.1 * forceMagnitude;
nodalForces[viPair.second] =
Vector6d({0, 0, 0, v[0], v[1], 0}) * 0.1 * forceMagnitude;
}
}
scenarios[scenarioName] = std::make_shared<SimulationJob>(
SimulationJob(pMesh, simulationScenarioStrings[scenarioName],
fixedVertices, nodalForces, {}));
return scenarios;
}
void ReducedModelOptimizer::computeObjectiveValueNormalizationFactors() {
if (global.optimizationSettings.normalizationStrategy ==
Settings::NormalizationStrategy::Epsilon) {
// Compute the sum of the displacement norms
std::vector<double> fullPatternDisplacementNormSum(
NumberOfSimulationScenarios);
for (int simulationScenarioIndex : global.simulationScenarioIndices) {
double displacementNormSum = 0;
for (auto interfaceViPair : global.reducedToFullInterfaceViMap) {
const Vector6d &vertexDisplacement =
global.fullPatternDisplacements[simulationScenarioIndex]
[interfaceViPair.second];
displacementNormSum += vertexDisplacement.getTranslation().norm();
}
fullPatternDisplacementNormSum[simulationScenarioIndex] =
displacementNormSum;
}
for (int simulationScenarioIndex : global.simulationScenarioIndices) {
if (global.optimizationSettings.normalizationStrategy ==
Settings::NormalizationStrategy::Epsilon) {
const double epsilon =
global.optimizationSettings.normalizationParameter;
if (epsilon > fullPatternDisplacementNormSum[simulationScenarioIndex]) {
// std::cout << "Epsilon used in "
// <<
// simulationScenarioStrings[simulationScenarioIndex]
// << std::endl;
}
global.objectiveNormalizationValues[simulationScenarioIndex] = std::max(
fullPatternDisplacementNormSum[simulationScenarioIndex], epsilon);
// displacementNormSum;
}
}
}
}
ReducedModelOptimizer::Results ReducedModelOptimizer::optimize(
const Settings &optimizationSettings,
const std::vector<SimulationScenario> &simulationScenarios) {
global.simulationScenarioIndices = simulationScenarios;
if (global.simulationScenarioIndices.empty()) {
global.simulationScenarioIndices = {
SimulationScenario::Axial, SimulationScenario::Shear,
SimulationScenario::Bending, SimulationScenario::Dome,
SimulationScenario::Saddle};
}
global.g_optimalReducedModelDisplacements.resize(NumberOfSimulationScenarios);
global.reducedPatternSimulationJobs.resize(NumberOfSimulationScenarios);
global.fullPatternDisplacements.resize(NumberOfSimulationScenarios);
global.objectiveNormalizationValues.resize(NumberOfSimulationScenarios);
global.minY = std::numeric_limits<double>::max();
global.numOfSimulationCrashes = 0;
global.numberOfFunctionCalls = 0;
global.optimizationSettings = optimizationSettings;
global.fullPatternSimulationJobs =
createScenarios(m_pFullPatternSimulationMesh);
reducedPatternMaximumDisplacementSimulationJobs.resize(
NumberOfSimulationScenarios);
// polyscope::removeAllStructures();
FormFinder::Settings simulationSettings;
// settings.shouldDraw = true;
for (int simulationScenarioIndex : global.simulationScenarioIndices) {
const std::shared_ptr<SimulationJob> &pFullPatternSimulationJob =
global.fullPatternSimulationJobs[simulationScenarioIndex];
SimulationResults fullModelResults = simulator.executeSimulation(
pFullPatternSimulationJob, simulationSettings);
global.fullPatternDisplacements[simulationScenarioIndex] =
fullModelResults.displacements;
SimulationJob reducedPatternSimulationJob;
reducedPatternSimulationJob.pMesh = m_pReducedPatternSimulationMesh;
computeReducedModelSimulationJob(*pFullPatternSimulationJob,
m_fullToReducedInterfaceViMap,
reducedPatternSimulationJob);
global.reducedPatternSimulationJobs[simulationScenarioIndex] =
std::make_shared<SimulationJob>(reducedPatternSimulationJob);
}
if (global.optimizationSettings.normalizationStrategy !=
Settings::NormalizationStrategy::NonNormalized) {
computeObjectiveValueNormalizationFactors();
}
Results optResults = runOptimization(optimizationSettings);
for (int simulationScenarioIndex : global.simulationScenarioIndices) {
optResults.fullPatternSimulationJobs.push_back(
global.fullPatternSimulationJobs[simulationScenarioIndex]);
optResults.reducedPatternSimulationJobs.push_back(
global.reducedPatternSimulationJobs[simulationScenarioIndex]);
}
#ifdef POLYSCOPE_DEFINED
optResults.draw();
#endif // POLYSCOPE_DEFINED
return optResults;
}