90 lines
2.6 KiB
C++
90 lines
2.6 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#include "common.h"
|
||
|
#include <Eigen/LU>
|
||
|
|
||
|
// computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges
|
||
|
EIGEN_LAPACK_FUNC(getrf,(int *m, int *n, RealScalar *pa, int *lda, int *ipiv, int *info))
|
||
|
{
|
||
|
*info = 0;
|
||
|
if(*m<0) *info = -1;
|
||
|
else if(*n<0) *info = -2;
|
||
|
else if(*lda<std::max(1,*m)) *info = -4;
|
||
|
if(*info!=0)
|
||
|
{
|
||
|
int e = -*info;
|
||
|
return xerbla_(SCALAR_SUFFIX_UP"GETRF", &e, 6);
|
||
|
}
|
||
|
|
||
|
if(*m==0 || *n==0)
|
||
|
return 0;
|
||
|
|
||
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||
|
int nb_transpositions;
|
||
|
int ret = int(Eigen::internal::partial_lu_impl<Scalar,ColMajor,int>
|
||
|
::blocked_lu(*m, *n, a, *lda, ipiv, nb_transpositions));
|
||
|
|
||
|
for(int i=0; i<std::min(*m,*n); ++i)
|
||
|
ipiv[i]++;
|
||
|
|
||
|
if(ret>=0)
|
||
|
*info = ret+1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
//GETRS solves a system of linear equations
|
||
|
// A * X = B or A' * X = B
|
||
|
// with a general N-by-N matrix A using the LU factorization computed by GETRF
|
||
|
EIGEN_LAPACK_FUNC(getrs,(char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info))
|
||
|
{
|
||
|
*info = 0;
|
||
|
if(OP(*trans)==INVALID) *info = -1;
|
||
|
else if(*n<0) *info = -2;
|
||
|
else if(*nrhs<0) *info = -3;
|
||
|
else if(*lda<std::max(1,*n)) *info = -5;
|
||
|
else if(*ldb<std::max(1,*n)) *info = -8;
|
||
|
if(*info!=0)
|
||
|
{
|
||
|
int e = -*info;
|
||
|
return xerbla_(SCALAR_SUFFIX_UP"GETRS", &e, 6);
|
||
|
}
|
||
|
|
||
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
||
|
MatrixType lu(a,*n,*n,*lda);
|
||
|
MatrixType B(b,*n,*nrhs,*ldb);
|
||
|
|
||
|
for(int i=0; i<*n; ++i)
|
||
|
ipiv[i]--;
|
||
|
if(OP(*trans)==NOTR)
|
||
|
{
|
||
|
B = PivotsType(ipiv,*n) * B;
|
||
|
lu.triangularView<UnitLower>().solveInPlace(B);
|
||
|
lu.triangularView<Upper>().solveInPlace(B);
|
||
|
}
|
||
|
else if(OP(*trans)==TR)
|
||
|
{
|
||
|
lu.triangularView<Upper>().transpose().solveInPlace(B);
|
||
|
lu.triangularView<UnitLower>().transpose().solveInPlace(B);
|
||
|
B = PivotsType(ipiv,*n).transpose() * B;
|
||
|
}
|
||
|
else if(OP(*trans)==ADJ)
|
||
|
{
|
||
|
lu.triangularView<Upper>().adjoint().solveInPlace(B);
|
||
|
lu.triangularView<UnitLower>().adjoint().solveInPlace(B);
|
||
|
B = PivotsType(ipiv,*n).transpose() * B;
|
||
|
}
|
||
|
for(int i=0; i<*n; ++i)
|
||
|
ipiv[i]++;
|
||
|
|
||
|
return 0;
|
||
|
}
|