threed-beam-fea/examples/cantilever_beam_with_ties.cpp

88 lines
3.3 KiB
C++
Raw Normal View History

2015-11-05 19:36:26 +01:00
// Copyright 2015. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: ryan.latture@gmail.com (Ryan Latture)
#include <iostream>
#include "threed_beam_fea.h"
int main(int argc, char *argv[])
{
using namespace fea;
double pi = 3.14159265358979323846;
// define the vector perpendicular to the beam elements
std::vector<double> normal_vec = {0.0, 1.0, 0.0};
// set up the properties for the elements
double E_o = 1000.0; // Young's modulus
double G_o = 100.0; // shear modulus
// assume circular cross-section
double radius = 0.1;
double area = pi * radius * radius;
double second_moment_area = pi * pow(radius, 4.0) / 4.0;
double J = 2.0 * second_moment_area;
// define elemental properties
double EA = E_o * area; // extensional stiffness
double EIz = E_o * second_moment_area; // bending stiffness along z-axis
double EIy = E_o * second_moment_area; // bending stiffness along y-axis
double GJ = G_o * J; // torsional stiffness
Props props(EA, EIz, EIy, GJ, normal_vec);
// define the (x, y, z) coordinate of the nodes
std::vector<Node> nodes = {Node(0.0, 0.0, 0.0), Node(1.0, 0.0, 0.0), Node(1.0, 0.0, 0.0), Node(2.0, 0.0, 0.0)};
// define which nodes are connected to form elements
std::vector<Elem> elems = {Elem(0, 1, props), Elem(2, 3, props)};
// tie the second and third nodes with linear springs
std::vector<Tie> ties = {Tie(1, 2, 100.0, 100.0)};
// assemble nodes and elements into a Job for analysis
Job job(nodes, elems);
// fix all DOFs of first node
BC bc1(0, 0, 0.0);
BC bc2(0, 1, 0.0);
BC bc3(0, 2, 0.0);
BC bc4(0, 3, 0.0);
BC bc5(0, 4, 0.0);
BC bc6(0, 5, 0.0);
std::vector<BC> bcs = {bc1, bc2, bc3, bc4, bc5, bc6};
// apply force on node at (2,0,0)
std::vector<Force> forces= {Force(3, DOF::DISPLACEMENT_Y, 0.01)};
// use default options
Options opts;
// solve for nodal displacements
Summary summary = solve(job, bcs, forces, ties, opts);
// write report to terminal
std::cout << summary.FullReport() << std::endl;
return 0;
}