123 lines
4.0 KiB
C++
123 lines
4.0 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||
|
//
|
||
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#include "main.h"
|
||
|
#include <Eigen/LU>
|
||
|
|
||
|
template<typename Derived>
|
||
|
void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
|
||
|
{
|
||
|
typedef typename Derived::RealScalar RealScalar;
|
||
|
for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
|
||
|
{
|
||
|
RealScalar d = Eigen::ei_random<RealScalar>(-1,1);
|
||
|
int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
|
||
|
int j;
|
||
|
do {
|
||
|
j = Eigen::ei_random<int>(0,m.rows()-1);
|
||
|
} while (i==j); // j is another one (must be different)
|
||
|
m.row(i) += d * m.row(j);
|
||
|
|
||
|
i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
|
||
|
do {
|
||
|
j = Eigen::ei_random<int>(0,m.cols()-1);
|
||
|
} while (i==j); // j is another one (must be different)
|
||
|
m.col(i) += d * m.col(j);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<typename MatrixType> void lu_non_invertible()
|
||
|
{
|
||
|
/* this test covers the following files:
|
||
|
LU.h
|
||
|
*/
|
||
|
// NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function
|
||
|
int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
|
||
|
int rank = ei_random<int>(1, std::min(rows, cols)-1);
|
||
|
|
||
|
MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
|
||
|
m1 = MatrixType::Random(rows,cols);
|
||
|
if(rows <= cols)
|
||
|
for(int i = rank; i < rows; i++) m1.row(i).setZero();
|
||
|
else
|
||
|
for(int i = rank; i < cols; i++) m1.col(i).setZero();
|
||
|
doSomeRankPreservingOperations(m1);
|
||
|
|
||
|
LU<MatrixType> lu(m1);
|
||
|
typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel();
|
||
|
typename LU<MatrixType>::ImageResultType m1image = lu.image();
|
||
|
|
||
|
VERIFY(rank == lu.rank());
|
||
|
VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
|
||
|
VERIFY(!lu.isInjective());
|
||
|
VERIFY(!lu.isInvertible());
|
||
|
VERIFY(lu.isSurjective() == (lu.rank() == rows));
|
||
|
VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
|
||
|
VERIFY(m1image.lu().rank() == rank);
|
||
|
MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols());
|
||
|
sidebyside << m1, m1image;
|
||
|
VERIFY(sidebyside.lu().rank() == rank);
|
||
|
m2 = MatrixType::Random(cols,cols2);
|
||
|
m3 = m1*m2;
|
||
|
m2 = MatrixType::Random(cols,cols2);
|
||
|
lu.solve(m3, &m2);
|
||
|
VERIFY_IS_APPROX(m3, m1*m2);
|
||
|
/* solve now always returns true
|
||
|
m3 = MatrixType::Random(rows,cols2);
|
||
|
VERIFY(!lu.solve(m3, &m2));
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
template<typename MatrixType> void lu_invertible()
|
||
|
{
|
||
|
/* this test covers the following files:
|
||
|
LU.h
|
||
|
*/
|
||
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
||
|
int size = ei_random<int>(10,200);
|
||
|
|
||
|
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
||
|
m1 = MatrixType::Random(size,size);
|
||
|
|
||
|
if (ei_is_same_type<RealScalar,float>::ret)
|
||
|
{
|
||
|
// let's build a matrix more stable to inverse
|
||
|
MatrixType a = MatrixType::Random(size,size*2);
|
||
|
m1 += a * a.adjoint();
|
||
|
}
|
||
|
|
||
|
LU<MatrixType> lu(m1);
|
||
|
VERIFY(0 == lu.dimensionOfKernel());
|
||
|
VERIFY(size == lu.rank());
|
||
|
VERIFY(lu.isInjective());
|
||
|
VERIFY(lu.isSurjective());
|
||
|
VERIFY(lu.isInvertible());
|
||
|
VERIFY(lu.image().lu().isInvertible());
|
||
|
m3 = MatrixType::Random(size,size);
|
||
|
lu.solve(m3, &m2);
|
||
|
VERIFY_IS_APPROX(m3, m1*m2);
|
||
|
VERIFY_IS_APPROX(m2, lu.inverse()*m3);
|
||
|
m3 = MatrixType::Random(size,size);
|
||
|
VERIFY(lu.solve(m3, &m2));
|
||
|
}
|
||
|
|
||
|
void test_eigen2_lu()
|
||
|
{
|
||
|
for(int i = 0; i < g_repeat; i++) {
|
||
|
CALL_SUBTEST_1( lu_non_invertible<MatrixXf>() );
|
||
|
CALL_SUBTEST_2( lu_non_invertible<MatrixXd>() );
|
||
|
CALL_SUBTEST_3( lu_non_invertible<MatrixXcf>() );
|
||
|
CALL_SUBTEST_4( lu_non_invertible<MatrixXcd>() );
|
||
|
CALL_SUBTEST_1( lu_invertible<MatrixXf>() );
|
||
|
CALL_SUBTEST_2( lu_invertible<MatrixXd>() );
|
||
|
CALL_SUBTEST_3( lu_invertible<MatrixXcf>() );
|
||
|
CALL_SUBTEST_4( lu_invertible<MatrixXcd>() );
|
||
|
}
|
||
|
}
|