213 lines
5.7 KiB
C++
213 lines
5.7 KiB
C++
|
|
||
|
// g++ -DNDEBUG -O3 -I.. benchEigenSolver.cpp -o benchEigenSolver && ./benchEigenSolver
|
||
|
// options:
|
||
|
// -DBENCH_GMM
|
||
|
// -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3
|
||
|
// -DEIGEN_DONT_VECTORIZE
|
||
|
// -msse2
|
||
|
// -DREPEAT=100
|
||
|
// -DTRIES=10
|
||
|
// -DSCALAR=double
|
||
|
|
||
|
#include <iostream>
|
||
|
|
||
|
#include <Eigen/Core>
|
||
|
#include <Eigen/QR>
|
||
|
#include <bench/BenchUtil.h>
|
||
|
using namespace Eigen;
|
||
|
|
||
|
#ifndef REPEAT
|
||
|
#define REPEAT 1000
|
||
|
#endif
|
||
|
|
||
|
#ifndef TRIES
|
||
|
#define TRIES 4
|
||
|
#endif
|
||
|
|
||
|
#ifndef SCALAR
|
||
|
#define SCALAR float
|
||
|
#endif
|
||
|
|
||
|
typedef SCALAR Scalar;
|
||
|
|
||
|
template <typename MatrixType>
|
||
|
__attribute__ ((noinline)) void benchEigenSolver(const MatrixType& m)
|
||
|
{
|
||
|
int rows = m.rows();
|
||
|
int cols = m.cols();
|
||
|
|
||
|
int stdRepeats = std::max(1,int((REPEAT*1000)/(rows*rows*sqrt(rows))));
|
||
|
int saRepeats = stdRepeats * 4;
|
||
|
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
||
|
|
||
|
MatrixType a = MatrixType::Random(rows,cols);
|
||
|
SquareMatrixType covMat = a * a.adjoint();
|
||
|
|
||
|
BenchTimer timerSa, timerStd;
|
||
|
|
||
|
Scalar acc = 0;
|
||
|
int r = internal::random<int>(0,covMat.rows()-1);
|
||
|
int c = internal::random<int>(0,covMat.cols()-1);
|
||
|
{
|
||
|
SelfAdjointEigenSolver<SquareMatrixType> ei(covMat);
|
||
|
for (int t=0; t<TRIES; ++t)
|
||
|
{
|
||
|
timerSa.start();
|
||
|
for (int k=0; k<saRepeats; ++k)
|
||
|
{
|
||
|
ei.compute(covMat);
|
||
|
acc += ei.eigenvectors().coeff(r,c);
|
||
|
}
|
||
|
timerSa.stop();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
{
|
||
|
EigenSolver<SquareMatrixType> ei(covMat);
|
||
|
for (int t=0; t<TRIES; ++t)
|
||
|
{
|
||
|
timerStd.start();
|
||
|
for (int k=0; k<stdRepeats; ++k)
|
||
|
{
|
||
|
ei.compute(covMat);
|
||
|
acc += ei.eigenvectors().coeff(r,c);
|
||
|
}
|
||
|
timerStd.stop();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (MatrixType::RowsAtCompileTime==Dynamic)
|
||
|
std::cout << "dyn ";
|
||
|
else
|
||
|
std::cout << "fixed ";
|
||
|
std::cout << covMat.rows() << " \t"
|
||
|
<< timerSa.value() * REPEAT / saRepeats << "s \t"
|
||
|
<< timerStd.value() * REPEAT / stdRepeats << "s";
|
||
|
|
||
|
#ifdef BENCH_GMM
|
||
|
if (MatrixType::RowsAtCompileTime==Dynamic)
|
||
|
{
|
||
|
timerSa.reset();
|
||
|
timerStd.reset();
|
||
|
|
||
|
gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(),covMat.cols());
|
||
|
gmm::dense_matrix<Scalar> eigvect(covMat.rows(),covMat.cols());
|
||
|
std::vector<Scalar> eigval(covMat.rows());
|
||
|
eiToGmm(covMat, gmmCovMat);
|
||
|
for (int t=0; t<TRIES; ++t)
|
||
|
{
|
||
|
timerSa.start();
|
||
|
for (int k=0; k<saRepeats; ++k)
|
||
|
{
|
||
|
gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect);
|
||
|
acc += eigvect(r,c);
|
||
|
}
|
||
|
timerSa.stop();
|
||
|
}
|
||
|
// the non-selfadjoint solver does not compute the eigen vectors
|
||
|
// for (int t=0; t<TRIES; ++t)
|
||
|
// {
|
||
|
// timerStd.start();
|
||
|
// for (int k=0; k<stdRepeats; ++k)
|
||
|
// {
|
||
|
// gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect);
|
||
|
// acc += eigvect(r,c);
|
||
|
// }
|
||
|
// timerStd.stop();
|
||
|
// }
|
||
|
|
||
|
std::cout << " | \t"
|
||
|
<< timerSa.value() * REPEAT / saRepeats << "s"
|
||
|
<< /*timerStd.value() * REPEAT / stdRepeats << "s"*/ " na ";
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef BENCH_GSL
|
||
|
if (MatrixType::RowsAtCompileTime==Dynamic)
|
||
|
{
|
||
|
timerSa.reset();
|
||
|
timerStd.reset();
|
||
|
|
||
|
gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(),covMat.cols());
|
||
|
gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(),covMat.cols());
|
||
|
gsl_matrix* eigvect = gsl_matrix_alloc(covMat.rows(),covMat.cols());
|
||
|
gsl_vector* eigval = gsl_vector_alloc(covMat.rows());
|
||
|
gsl_eigen_symmv_workspace* eisymm = gsl_eigen_symmv_alloc(covMat.rows());
|
||
|
|
||
|
gsl_matrix_complex* eigvectz = gsl_matrix_complex_alloc(covMat.rows(),covMat.cols());
|
||
|
gsl_vector_complex* eigvalz = gsl_vector_complex_alloc(covMat.rows());
|
||
|
gsl_eigen_nonsymmv_workspace* einonsymm = gsl_eigen_nonsymmv_alloc(covMat.rows());
|
||
|
|
||
|
eiToGsl(covMat, &gslCovMat);
|
||
|
for (int t=0; t<TRIES; ++t)
|
||
|
{
|
||
|
timerSa.start();
|
||
|
for (int k=0; k<saRepeats; ++k)
|
||
|
{
|
||
|
gsl_matrix_memcpy(gslCopy,gslCovMat);
|
||
|
gsl_eigen_symmv(gslCopy, eigval, eigvect, eisymm);
|
||
|
acc += gsl_matrix_get(eigvect,r,c);
|
||
|
}
|
||
|
timerSa.stop();
|
||
|
}
|
||
|
for (int t=0; t<TRIES; ++t)
|
||
|
{
|
||
|
timerStd.start();
|
||
|
for (int k=0; k<stdRepeats; ++k)
|
||
|
{
|
||
|
gsl_matrix_memcpy(gslCopy,gslCovMat);
|
||
|
gsl_eigen_nonsymmv(gslCopy, eigvalz, eigvectz, einonsymm);
|
||
|
acc += GSL_REAL(gsl_matrix_complex_get(eigvectz,r,c));
|
||
|
}
|
||
|
timerStd.stop();
|
||
|
}
|
||
|
|
||
|
std::cout << " | \t"
|
||
|
<< timerSa.value() * REPEAT / saRepeats << "s \t"
|
||
|
<< timerStd.value() * REPEAT / stdRepeats << "s";
|
||
|
|
||
|
gsl_matrix_free(gslCovMat);
|
||
|
gsl_vector_free(gslCopy);
|
||
|
gsl_matrix_free(eigvect);
|
||
|
gsl_vector_free(eigval);
|
||
|
gsl_matrix_complex_free(eigvectz);
|
||
|
gsl_vector_complex_free(eigvalz);
|
||
|
gsl_eigen_symmv_free(eisymm);
|
||
|
gsl_eigen_nonsymmv_free(einonsymm);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
std::cout << "\n";
|
||
|
|
||
|
// make sure the compiler does not optimize too much
|
||
|
if (acc==123)
|
||
|
std::cout << acc;
|
||
|
}
|
||
|
|
||
|
int main(int argc, char* argv[])
|
||
|
{
|
||
|
const int dynsizes[] = {4,6,8,12,16,24,32,64,128,256,512,0};
|
||
|
std::cout << "size selfadjoint generic";
|
||
|
#ifdef BENCH_GMM
|
||
|
std::cout << " GMM++ ";
|
||
|
#endif
|
||
|
#ifdef BENCH_GSL
|
||
|
std::cout << " GSL (double + ATLAS) ";
|
||
|
#endif
|
||
|
std::cout << "\n";
|
||
|
for (uint i=0; dynsizes[i]>0; ++i)
|
||
|
benchEigenSolver(Matrix<Scalar,Dynamic,Dynamic>(dynsizes[i],dynsizes[i]));
|
||
|
|
||
|
benchEigenSolver(Matrix<Scalar,2,2>());
|
||
|
benchEigenSolver(Matrix<Scalar,3,3>());
|
||
|
benchEigenSolver(Matrix<Scalar,4,4>());
|
||
|
benchEigenSolver(Matrix<Scalar,6,6>());
|
||
|
benchEigenSolver(Matrix<Scalar,8,8>());
|
||
|
benchEigenSolver(Matrix<Scalar,12,12>());
|
||
|
benchEigenSolver(Matrix<Scalar,16,16>());
|
||
|
return 0;
|
||
|
}
|
||
|
|