threed-beam-fea/ext/eigen-3.2.4/test/schur_complex.cpp

92 lines
3.5 KiB
C++
Raw Normal View History

2015-11-05 19:36:26 +01:00
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
{
typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar;
typedef typename ComplexSchur<MatrixType>::ComplexMatrixType ComplexMatrixType;
// Test basic functionality: T is triangular and A = U T U*
for(int counter = 0; counter < g_repeat; ++counter) {
MatrixType A = MatrixType::Random(size, size);
ComplexSchur<MatrixType> schurOfA(A);
VERIFY_IS_EQUAL(schurOfA.info(), Success);
ComplexMatrixType U = schurOfA.matrixU();
ComplexMatrixType T = schurOfA.matrixT();
for(int row = 1; row < size; ++row) {
for(int col = 0; col < row; ++col) {
VERIFY(T(row,col) == (typename MatrixType::Scalar)0);
}
}
VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
}
// Test asserts when not initialized
ComplexSchur<MatrixType> csUninitialized;
VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
VERIFY_RAISES_ASSERT(csUninitialized.matrixU());
VERIFY_RAISES_ASSERT(csUninitialized.info());
// Test whether compute() and constructor returns same result
MatrixType A = MatrixType::Random(size, size);
ComplexSchur<MatrixType> cs1;
cs1.compute(A);
ComplexSchur<MatrixType> cs2(A);
VERIFY_IS_EQUAL(cs1.info(), Success);
VERIFY_IS_EQUAL(cs2.info(), Success);
VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
VERIFY_IS_EQUAL(cs1.matrixU(), cs2.matrixU());
// Test maximum number of iterations
ComplexSchur<MatrixType> cs3;
cs3.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
VERIFY_IS_EQUAL(cs3.info(), Success);
VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT());
VERIFY_IS_EQUAL(cs3.matrixU(), cs1.matrixU());
cs3.setMaxIterations(1).compute(A);
VERIFY_IS_EQUAL(cs3.info(), size > 1 ? NoConvergence : Success);
VERIFY_IS_EQUAL(cs3.getMaxIterations(), 1);
MatrixType Atriangular = A;
Atriangular.template triangularView<StrictlyLower>().setZero();
cs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
VERIFY_IS_EQUAL(cs3.info(), Success);
VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>());
VERIFY_IS_EQUAL(cs3.matrixU(), ComplexMatrixType::Identity(size, size));
// Test computation of only T, not U
ComplexSchur<MatrixType> csOnlyT(A, false);
VERIFY_IS_EQUAL(csOnlyT.info(), Success);
VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
VERIFY_RAISES_ASSERT(csOnlyT.matrixU());
if (size > 1)
{
// Test matrix with NaN
A(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
ComplexSchur<MatrixType> csNaN(A);
VERIFY_IS_EQUAL(csNaN.info(), NoConvergence);
}
}
void test_schur_complex()
{
CALL_SUBTEST_1(( schur<Matrix4cd>() ));
CALL_SUBTEST_2(( schur<MatrixXcf>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) ));
CALL_SUBTEST_3(( schur<Matrix<std::complex<float>, 1, 1> >() ));
CALL_SUBTEST_4(( schur<Matrix<float, 3, 3, Eigen::RowMajor> >() ));
// Test problem size constructors
CALL_SUBTEST_5(ComplexSchur<MatrixXf>(10));
}