vcglib/vcg/connectors/hedge_component.h

401 lines
18 KiB
C
Raw Normal View History

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_HEDGE_COMPONENT
#define __VCG_HEDGE_COMPONENT
//#include <vector>
#include <string>
//#include <vcg/space/point3.h>
//#include <vcg/space/texcoord2.h>
#include <vcg/space/color4.h>
namespace vcg {
namespace hedge {
/*
Some naming Rules
All the Components that can be added to a vertex should be defined in the namespace hedge:
*/
//
///*-------------------------- VERTEX ----------------------------------------*/
//template <class T> class EmptyVertexRef: public T {
//public:
// // typedef typename T::VertexType VertexType;
// // typedef typename T::CoordType CoordType;
// inline typename T::VertexType * & V( const int j ) { assert(0); static typename T::VertexType *vp=0; return vp; }
// inline typename T::VertexType * const & V( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
// inline typename T::VertexType * cV( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; }
// inline typename T::CoordType & P( const int j ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
// inline const typename T::CoordType & P( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
// inline const typename T::CoordType &cP( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
// template <class LeftF>
// void ImportData(const LeftF & leftF) {T::ImportData(leftF);}
// static bool HasVertexRef() { return false; }
// static void Name(std::vector<std::string> & name){T::Name(name);}
//
//};
//template <class T> class VertexRef: public T {
//public:
// VertexRef(){
// v[0]=0;
// v[1]=0;
// }
//
// inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<2); return v[j]; }
// inline typename T::VertexType * const & V( const int j ) const { assert(j>=0 && j<2); return v[j]; }
// inline typename T::VertexType * cV( const int j ) const { assert(j>=0 && j<2); return v[j]; }
//
// // Shortcut per accedere ai punti delle facce
// inline typename T::CoordType & P( const int j ) { assert(j>=0 && j<2); return v[j]->P(); }
// inline const typename T::CoordType &cP( const int j ) const { assert(j>=0 && j<2); return v[j]->cP(); }
//
// /** Return the pointer to the ((j+1)%3)-th vertex of the face.
// @param j Index of the face vertex.
// */
// inline typename T::VertexType * & V0( const int j ) { return V(j);}
// inline typename T::VertexType * & V1( const int j ) { return V((j+1)%2);}
// inline const typename T::VertexType * const & V0( const int j ) const { return V(j);}
// inline const typename T::VertexType * const & V1( const int j ) const { return V((j+1)%2);}
// inline const typename T::VertexType * const & cV0( const int j ) const { return cV(j);}
// inline const typename T::VertexType * const & cV1( const int j ) const { return cV((j+1)%2);}
//
// /// Shortcut per accedere ai punti delle facce
// inline typename T::CoordType & P0( const int j ) { return V(j)->P();}
// inline typename T::CoordType & P1( const int j ) { return V((j+1)%2)->P();}
// inline const typename T::CoordType & P0( const int j ) const { return V(j)->P();}
// inline const typename T::CoordType & P1( const int j ) const { return V((j+1)%2)->P();}
// inline const typename T::CoordType & cP0( const int j ) const { return cV(j)->P();}
// inline const typename T::CoordType & cP1( const int j ) const { return cV((j+1)%2)->P();}
//
// inline typename T::VertexType * & UberV( const int j ) { assert(j>=0 && j<2); return v[j]; }
// inline const typename T::VertexType * const & UberV( const int j ) const { assert(j>=0 && j<2); return v[j]; }
//
// template <class LeftF>
// void ImportData(const LeftF & leftF){ V(0) = NULL; V(1) = NULL; V(2) = NULL; T::ImportData(leftF);}
//
// static bool HasVertexRef() { return true; }
// static void Name(std::vector<std::string> & name){name.push_back(std::string("VertexRef"));T::Name(name);}
//
//
// private:
// typename T::VertexType *v[2];
//};
/*-------------------------- INCREMENTAL MARK ----------------------------------------*/
template <class T> class EmptyMark: public T {
public:
static bool HasMark() { return false; }
static bool HasMarkOcc() { return false; }
inline void InitIMark() { }
inline int & IMark() { assert(0); static int tmp=-1; return tmp;}
inline const int & IMark() const {return 0;}
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class Mark: public T {
public:
static bool HasMark() { return true; }
static bool HasMarkOcc() { return true; }
inline void InitIMark() { _imark = 0; }
inline int & IMark() { return _imark;}
inline const int & IMark() const {return _imark;}
template < class LeftV>
void ImportData(const LeftV & left ) { IMark() = left.IMark(); T::ImportData( left); }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Mark"));T::Name(name);}
private:
int _imark;
};
/*------------------------- FLAGS -----------------------------------------*/
template <class T> class EmptyBitFlags: public T {
public:
typedef int FlagType;
/// Return the vector of Flags(), senza effettuare controlli sui bit
int &Flags() { static int dummyflags(0); assert(0); return dummyflags; }
int Flags() const { return 0; }
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasFlags() { return false; }
static void Name(std::vector<std::string> & name){T::Name(name);}
};
template <class T> class BitFlags: public T {
public:
BitFlags(){_flags=0;}
typedef int FlagType;
int &Flags() {return _flags; }
int Flags() const {return _flags; }
template < class LeftV>
void ImportData(const LeftV & left ) { Flags() = left.Flags(); T::ImportData( left); }
static bool HasFlags() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("BitFlags"));T::Name(name);}
private:
int _flags;
};
/*----------------------------- HVADJ ------------------------------*/
template <class T> class EmptyHVAdj: public T {
public:
typename T::VertexPointer &HVp() { static typename T::VertexPointer ep=0; assert(0); return ep; }
const typename T::VertexPointer cHVp() const { static typename T::VertexPointer ep=0; assert(0); return ep; }
int &HVi(){static int z=0; return z;}
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasHVAdjacency() { return false; }
static bool HasHVAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HVAdj: public T {
public:
HVAdj(){_vp =0;}
typename T::VertexPointer & HVp() {return _vp ; }
const typename T::VertexPointer cHVp() const {return _vp ; }
template < class LeftV>
void ImportData(const LeftV & left ) { this->V() = NULL; T::ImportData( left); }
static bool HasHVAdjacency() { return true; }
static bool HasHVAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HVAdj"));T::Name(name);}
private:
typename T::VertexPointer _vp ;
};
/*----------------------------- HEADJ ------------------------------*/
template <class T> class EmptyHEAdj: public T {
public:
typename T::EdgePointer &HEp() { static typename T::EdgePointer ep=0; assert(0); return ep; }
const typename T::EdgePointer cHEp() const { static typename T::EdgePointer ep=0; assert(0); return ep; }
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasHEAdjacency() { return false; }
static bool HasHEAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HEAdj: public T {
public:
HEAdj(){_ep =0;}
typename T::EdgePointer &HEp() {return _ep ; }
const typename T::EdgePointer cHEp() const {return _ep ; }
template < class LeftV>
void ImportData(const LeftV & left ) { this->V() = NULL; T::ImportData( left); }
static bool HasHEAdjacency() { return true; }
static bool HasHEAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HEAdj"));T::Name(name);}
private:
typename T::EdgePointer _ep ;
};
/*----------------------------- HHADJ ------------------------------*/
template <class T> class EmptyHHAdj: public T {
public:
typename T::HEdgePointer &HHp(const int & ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::HEdgePointer cHHp(const int & ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
int &HHi(){static int z=0; return z;}
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasHHAdjacency() { return false; }
static bool HasHHAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HHAdj: public T {
public:
HHAdj(){_ep=0;}
typename T::EdgePointer &HHp(const int & i) {return _ep[i]; }
typename T::EdgePointer cHHp(const int & i) {return _ep[i]; }
int &HHi(const int & i) {return _zp[i]; }
template < class LeftV>
void ImportData(const LeftV & left ) { HHp() = NULL; T::ImportData( left); }
static bool HasHHAdjacency() { return true; }
static bool HasHHAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HHAdj"));T::Name(name);}
private:
typename T::HEdgePointer _ep[2] ;
int _zp[2] ;
};
/*----------------------------- HENextADJ ------------------------------*/
template <class T> class EmptyHNextAdj: public T {
public:
typename T::HEdgePointer &HNp( ) { static typename T::HEdgePointer ep=0; assert(0); return ep; }
typename T::HEdgePointer const cHNp( ) const { static typename T::HEdgePointer ep=0; assert(0); return ep; }
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasHNextAdjacency() { return false; }
static bool HasHNextAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HNextAdj: public T {
public:
HNextAdj(){_nep=0;}
typename T::HEdgePointer &HNp() {return _nep; }
typename T::HEdgePointer const cHNp() const {return _nep; }
template < class LeftV>
void ImportData(const LeftV & left ) { this->EEp() = NULL; T::ImportData( left); }
static bool HasHNextAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HNextAdj"));T::Name(name);}
private:
typename T::HEdgePointer _nep ;
};
/*----------------------------- HEOppADJ ------------------------------*/
template <class T> class EmptyHOppAdj: public T {
public:
typename T::HEdgePointer &HOp() { static typename T::HEdgePointer ep=0; assert(0); return ep; }
typename T::HEdgePointer const cHOp() const { static typename T::HEdgePointer ep=0; assert(0); return ep; }
int &EEi(){static int z=0; return z;}
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasHOppAdjacency() { return false; }
static bool HasHOpptAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HOppAdj: public T {
public:
HOppAdj(){_oep=0;}
typename T::HEdgePointer &HOp() {return _oep; }
typename T::HEdgePointer cHOp() {return _oep; }
template < class LeftV>
void ImportData(const LeftV & left ) { this->HOp() = NULL; T::ImportData( left); }
static bool HasHOppAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HOppAdj"));T::Name(name);}
private:
typename T::HEdgePointer _oep ;
};
/*----------------------------- HPrevADJ ------------------------------*/
template <class T> class EmptyHPrevAdj: public T {
public:
typename T::HEdgePointer &HPp() { static typename T::HEdgePointer ep=0; assert(0); return ep; }
typename T::HEdgePointer const cHPp() const { static typename T::HEdgePointer ep=0; assert(0); return ep; }
int &EEi(){static int z=0; return z;}
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasHPrevAdjacency() { return false; }
static bool HasHPrevAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HPrevAdj: public T {
public:
HPrevAdj(){_pep=0;}
typename T::HEdgePointer &HPp() {return _pep; }
typename T::HEdgePointer cHPp() {return _pep; }
int &EEi(const int & i) {return this->_nei[i]; }
template < class LeftV>
void ImportData(const LeftV & left ) { this->EEp() = NULL; T::ImportData( left); }
static bool HasHPrevAdjacency() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HPrevAdj"));T::Name(name);}
private:
typename T::HEdgePointer _pep ;
};
/*----------------------------- HFADJ ------------------------------*/
template <class T> class EmptyHFAdj: public T {
public:
typename T::FacePointer &HFp() { static typename T::FacePointer fp=0; assert(0); return fp; }
typename T::FacePointer const cHFp() const { static typename T::FacePointer fp=0; assert(0); return fp; }
int &EFi(){static int z=0; return z;}
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasHFAdjacency() { return false; }
static bool HasHFAdjacencyOcc() { return false; }
static void Name(std::vector<std::string> & name){ T::Name(name);}
};
template <class T> class HFAdj: public T {
public:
HFAdj(){_fp=0;}
typename T::FacePointer &HFp() {return _fp; }
typename T::FacePointer cHFp() {return _fp; }
int &EFi() {return _zp; }
template < class LeftV>
void ImportData(const LeftV & left ) { this->EFp() = NULL; T::ImportData( left); }
static bool HasHFAdjacency() { return true; }
static bool HasHFAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("HFAdj"));T::Name(name);}
private:
typename T::FacePointer _fp ;
int _zp ;
};
/*----------------------------- HFADJ ------------------------------*/
/**
HEdgeData keep all the data for the half edge
*/
template <class T>
class EmptyHEdgeData : public EmptyHFAdj< // pointer to the face
EmptyHOppAdj < // pointer to the opposite half edge
EmptyHNextAdj < // pointer to the next half edge along the face
EmptyHVAdj < // pointer to the vertex
EmptyHEAdj < // pointer to the edge
EmptyHPrevAdj<
T > > > > > > {};
template <class T>
class HEdgeData : public HFAdj< // pointer to the face
HOppAdj < // pointer to the opposite half edge
HNextAdj < // pointer to the next half edge along the face
HVAdj < // pointer to the vertex
HEAdj < // pointer to the edge
T > > > > > {
public:
// functions to make the half edge user confortable
typename T::VertexPointer & Vertex() { return this->HVp();}
const typename T::VertexPointer & cVertex() const { return this->cHVp();}
typename T::HEdgePointer Opposite() { return this->HOp();}
const typename T::HEdgePointer & cOpposite() const { return this->cHOp();}
typename T::HEdgePointer & Next() { return this->HNp();}
const typename T::HEdgePointer & cNext() const { return this->HNp();}
};
} // end namespace edge
}// end namespace vcg
#endif