200 lines
7.1 KiB
C
200 lines
7.1 KiB
C
|
/****************************************************************************
|
||
|
* VCGLib o o *
|
||
|
* Visual and Computer Graphics Library o o *
|
||
|
* _ O _ *
|
||
|
* Copyright(C) 2004 \/)\/ *
|
||
|
* Visual Computing Lab /\/| *
|
||
|
* ISTI - Italian National Research Council | *
|
||
|
* \ *
|
||
|
* All rights reserved. *
|
||
|
* *
|
||
|
* This program is free software; you can redistribute it and/or modify *
|
||
|
* it under the terms of the GNU General Public License as published by *
|
||
|
* the Free Software Foundation; either version 2 of the License, or *
|
||
|
* (at your option) any later version. *
|
||
|
* *
|
||
|
* This program is distributed in the hope that it will be useful, *
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
|
* for more details. *
|
||
|
* *
|
||
|
****************************************************************************/
|
||
|
/****************************************************************************
|
||
|
History
|
||
|
|
||
|
$Log: not supported by cvs2svn $
|
||
|
|
||
|
****************************************************************************/
|
||
|
|
||
|
|
||
|
|
||
|
#ifndef __VCGLIB_RAY2
|
||
|
#define __VCGLIB_RAY2
|
||
|
|
||
|
#include <vcg/space/point2.h>
|
||
|
|
||
|
namespace vcg {
|
||
|
|
||
|
/** \addtogroup space */
|
||
|
/*@{*/
|
||
|
/**
|
||
|
Templated class for 3D rays.
|
||
|
This is the class for infinite rays in 3D space. A Ray is stored just as two Point3:
|
||
|
an origin and a direction (not necessarily normalized).
|
||
|
@param RayScalarType (template parameter) Specifies the type of scalar used to represent coords.
|
||
|
@param NORM: if on, the direction is always Normalized
|
||
|
*/
|
||
|
template <class RayScalarType, bool NORM=false>
|
||
|
class Ray2
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
/// The scalar type
|
||
|
typedef RayScalarType ScalarType;
|
||
|
|
||
|
/// The point type
|
||
|
typedef Point2<RayScalarType> PointType;
|
||
|
|
||
|
/// The ray type
|
||
|
typedef Ray2<RayScalarType,NORM> RayType;
|
||
|
|
||
|
private:
|
||
|
|
||
|
/// Origin
|
||
|
PointType _ori;
|
||
|
|
||
|
/// Direction (not necessarily normalized, unless so specified by NORM)
|
||
|
PointType _dir;
|
||
|
|
||
|
public:
|
||
|
|
||
|
//@{
|
||
|
/** @name Members to access the origin or direction
|
||
|
Direction() cannot be assigned directly.
|
||
|
Use SetDirection() or Set() instead.
|
||
|
**/
|
||
|
///
|
||
|
inline const PointType &Origin() const { return _ori; }
|
||
|
inline PointType &Origin() { return _ori; }
|
||
|
inline const PointType &Direction() const { return _dir; }
|
||
|
/// sets the origin
|
||
|
inline void SetOrigin( const PointType & ori )
|
||
|
{ _ori=ori; }
|
||
|
/// sets the direction
|
||
|
inline void SetDirection( const PointType & dir)
|
||
|
{ _dir=dir; if (NORM) _dir.Normalize(); }
|
||
|
/// sets origin and direction.
|
||
|
inline void Set( const PointType & ori, const PointType & dir )
|
||
|
{ SetOrigin(ori); SetDirection(dir); }
|
||
|
//@}
|
||
|
|
||
|
//@{
|
||
|
/** @name Constructors
|
||
|
**/
|
||
|
/// The empty constructor
|
||
|
Ray2() {};
|
||
|
/// The (origin, direction) constructor
|
||
|
Ray2(const PointType &ori, const PointType &dir) {SetOrigin(ori); SetDirection(dir);};
|
||
|
//@}
|
||
|
|
||
|
/// Operator to compare two rays
|
||
|
inline bool operator == ( RayType const & p ) const
|
||
|
{ return _ori==p._ori && _dir==p._dir; }
|
||
|
/// Operator to dispare two rays
|
||
|
inline bool operator != ( RayType const & p ) const
|
||
|
{ return _ori!=p._ori || _dir!=p._dir; }
|
||
|
/// Projects a point on the ray
|
||
|
inline ScalarType Projection( const PointType &p ) const
|
||
|
{ if (NORM) return ScalarType((p-_ori)*_dir);
|
||
|
else return ScalarType((p-_ori)*_dir/_dir.SquaredNorm());
|
||
|
}
|
||
|
/// returns wheter this type is normalized or not
|
||
|
static bool IsNormalized() {return NORM;};
|
||
|
/// calculates the point of parameter t on the ray.
|
||
|
inline PointType P( const ScalarType t ) const
|
||
|
{ return _ori + _dir * t; }
|
||
|
/// normalizes direction field (returns a Normalized Ray)
|
||
|
inline Ray2<ScalarType,true> &Normalize()
|
||
|
{ if (!NORM) _dir.Normalize(); return *((Ray2<ScalarType,true>*)this);}
|
||
|
/// normalizes direction field (returns a Normalized Ray) - static version
|
||
|
static Ray2<ScalarType,true> &Normalize(RayType &p)
|
||
|
{ p.Normalize(); return *((Ray2<ScalarType,true>*)(&p));}
|
||
|
/// importer for different ray types (with any scalar type or normalization beaviour)
|
||
|
template <class Q, bool K>
|
||
|
inline void Import( const Ray2<Q,K> & b )
|
||
|
{ _ori.Import( b.Origin() ); _dir.Import( b.Direction() );
|
||
|
if ((NORM) && (!K)) _dir.Normalize();
|
||
|
//printf("(=)%c->%c ",(!NORM)?'N':'n', NORM?'N':'n');
|
||
|
}
|
||
|
/// constructs a new ray importing it from an existing one
|
||
|
template <class Q, bool K>
|
||
|
static RayType Construct( const Ray2<Q,K> & b )
|
||
|
{ RayType res; res.Import(b); return res;
|
||
|
}
|
||
|
PointType ClosestPoint(const PointType & p) const{
|
||
|
return P(Projection(p));
|
||
|
}
|
||
|
/// flips the ray
|
||
|
inline void Flip(){
|
||
|
_dir=-_dir;
|
||
|
};
|
||
|
|
||
|
//@{
|
||
|
/** @name Linearity for 3d rays
|
||
|
(operators +, -, *, /) so a ray can be set as a linear combination
|
||
|
of several rays. Note that the result of any operation returns
|
||
|
a non-normalized ray; however, the command r0 = r1*a + r2*b is licit
|
||
|
even if r0,r1,r2 are normalized rays, as the normalization will
|
||
|
take place within the final assignement operation.
|
||
|
**/
|
||
|
inline Ray2<ScalarType,false> operator + ( RayType const & p) const
|
||
|
{return Ray2<ScalarType,false> ( _ori+p.Origin(), _dir+p.Direction() );}
|
||
|
inline Ray2<ScalarType,false> operator - ( RayType const & p) const
|
||
|
{return Ray2<ScalarType,false> ( _ori-p.Origin(), _dir-p.Direction() );}
|
||
|
inline Ray2<ScalarType,false> operator * ( const ScalarType s ) const
|
||
|
{return Ray2<ScalarType,false> ( _ori*s, _dir*s );}
|
||
|
inline Ray2<ScalarType,false> operator / ( const ScalarType s ) const
|
||
|
{ScalarType s0=((ScalarType)1.0)/s; return RayType( _ori*s0, _dir*s0 );}
|
||
|
//@}
|
||
|
|
||
|
|
||
|
//@{
|
||
|
/** @name Automatic normalized to non-normalized
|
||
|
"Ray2dN r0 = r1" is equivalent to
|
||
|
"Ray2dN r0 = r1.Normalize()" if r1 is a Ray2d
|
||
|
**/
|
||
|
/// copy constructor that takes opposite beaviour
|
||
|
Ray2(const Ray2<ScalarType,!NORM > &r)
|
||
|
{ Import(r); };
|
||
|
/// assignment
|
||
|
inline RayType & operator = ( Ray2<ScalarType,!NORM> const &r)
|
||
|
{ Import(r); return *this; };
|
||
|
//@}
|
||
|
|
||
|
}; // end class definition
|
||
|
|
||
|
typedef Ray2<short> Ray2s;
|
||
|
typedef Ray2<int> Ray2i;
|
||
|
typedef Ray2<float> Ray2f;
|
||
|
typedef Ray2<double> Ray2d;
|
||
|
|
||
|
typedef Ray2<short ,true> Ray2sN;
|
||
|
typedef Ray2<int ,true> Ray2iN;
|
||
|
typedef Ray2<float ,true> Ray2fN;
|
||
|
typedef Ray2<double,true> Ray2dN;
|
||
|
|
||
|
/// returns closest point
|
||
|
template <class ScalarType, bool NORM>
|
||
|
Point3<ScalarType> ClosestPoint( Ray2<ScalarType,NORM> r, const Point3<ScalarType> & p)
|
||
|
{
|
||
|
ScalarType t = r.Projection(p);
|
||
|
if (t<0) return r.Origin();
|
||
|
return r.P(t);
|
||
|
}
|
||
|
|
||
|
/*@}*/
|
||
|
|
||
|
} // end namespace
|
||
|
#endif
|