vcglib/vcg/simplex/face/topology.h

255 lines
4.9 KiB
C
Raw Normal View History

2004-03-08 06:25:48 +01:00
/*#*******************
* Adjacency Members *
**********************/
/** Return a boolean that indicate if the face is complex.
@param j Index of the edge
@return true se la faccia e' manifold, false altrimenti
*/
inline bool IsManifold( const int j ) const
{
#if (defined(__VCGLIB_FACE_A) || defined(__VCGLIB_FACE_S))
return ( F(j)==this || this == F(j)->F(Z(j)) );
#endif
return true;
assert(0);
}
/** Return a boolean that indicate if the j-th edge of the face is a border.
@param j Index of the edge
@return true if j is an edge of border, false otherwise
*/
inline bool IsBorder( const int j ) const
{
#if (defined(__VCGLIB_FACE_A) || defined(__VCGLIB_FACE_S))
return F(j)==this;
#endif
return true;
assert(0);
}
/// This function counts the boreders of the face
inline int BorderCount() const
{
#if (defined(__VCGLIB_FACE_A) || defined(__VCGLIB_FACE_S))
int t = 0;
if( IsBorder(0) ) ++t;
if( IsBorder(1) ) ++t;
if( IsBorder(2) ) ++t;
return t;
#endif
assert(0);
return 3;
}
/// This function counts the number of incident faces in a complex edge
inline int ComplexSize(const int e) const
{
#if (defined(__VCGLIB_FACE_A) || defined(__VCGLIB_FACE_S))
int cnt=0;
FACE_TYPE *fi=(FACE_TYPE *)this;
int nzi,zi=e;
do
{
nzi=fi->Z(zi);
fi=fi->F(zi);
zi=nzi;
++cnt;
}
while(fi!=this);
return cnt;
#endif
assert(0);
return 2;
}
/*Funzione di detach che scollega una faccia da un ciclo
(eventualmente costituito da due soli elementi) incidente su un edge*/
/** This function detach the face from the adjacent face via the edge e. It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't define.
@param e Index of the edge
*/
void Detach(const int e)
{
typedef FEdgePosB< FACE_TYPE > ETYPE;
assert(!IsBorder(e));
ETYPE EPB(this,e); // la faccia dall'altra parte
EPB.NextF();
int cnt=0;
while ( EPB.f->F(EPB.z) != this)
{
assert(!IsManifold(e)); // Si entra in questo loop solo se siamo in una situazione non manifold.
assert(!EPB.f->IsBorder(EPB.z));
EPB.NextF();
cnt++;
}
assert(EPB.f->F(EPB.z)==this);
EPB.f->F(EPB.z) = F(e);
EPB.f->Z(EPB.z) = Z(e);
F(e) = this;
Z(e) = e;
EPB.f->SetM();
this->SetM();
}
void OldDetach(const int e)
{
typedef EdgePosB< FACE_TYPE > ETYPE;
assert(!IsBorder(e));
ETYPE EPB(this,e);
ETYPE TEPB(0,-1);
EPB.NextF();
while ( EPB.f != this)
{
TEPB = EPB;
assert(!EPB.f->IsBorder(EPB.z));
EPB.NextF();
}
assert(TEPB.f->F(TEPB.z)==this);
TEPB.f->F(TEPB.z) = F(e);
TEPB.f->Z(TEPB.z) = Z(e);
F(e) = this;
Z(e) = e;
TEPB.f->SetM();
this->SetM();
}
/** This function attach the face (via the edge z1) to another face (via the edge z2). It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't define.
@param z1 Index of the edge
@param f2 Pointer to the face
@param z2 The edge of the face f2
*/
void Attach(int z1, face_base *&f2, int z2)
{
typedef FEdgePosB< FACE_TYPE > ETYPE;
ETYPE EPB(f2,z2);
ETYPE TEPB;
TEPB = EPB;
EPB.NextF();
while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2
{
TEPB = EPB;
EPB.NextF();
}
//Salvo i dati di f1 prima di sovrascrivere
face_base *f1prec = this->F(z1);
int z1prec = this->Z(z1);
//Aggiorno f1
this->F(z1) = TEPB.f->F(TEPB.z);
this->Z(z1) = TEPB.f->Z(TEPB.z);
//Aggiorno la faccia che precede f2
TEPB.f->F(TEPB.z) = f1prec;
TEPB.f->Z(TEPB.z) = z1prec;
}
void AssertAdj()
{
assert(F(0)->F(Z(0))==this);
assert(F(1)->F(Z(1))==this);
assert(F(2)->F(Z(2))==this);
assert(F(0)->Z(Z(0))==0);
assert(F(1)->Z(Z(1))==1);
assert(F(2)->Z(Z(2))==2);
}
// Funzione di supporto
inline void Nexts( face_base *&f,int &z )
{
int t;
t = z;
z = (*f).Z(z);
f = (*f).F(t);
}
/** This function change the orientation of the face. Inverting the index of two vertex
@param z Index of the edge
*/
void Swap ( const int z )
{
int i;
face_base *tmp, *prec;
int t, precz;
swap ( V((z )%3),V((z+1)%3));
if( OBJ_TYPE & (OBJ_TYPE_A|OBJ_TYPE_S ) )
{
swap ( F((z+1)%3),F((z+2)%3));
swap ( Z((z+1)%3),Z((z+2)%3));
for(i = 1; i < 3; i++)
{
tmp = this;
t = (z+i)%3;
do {
prec = tmp;
precz = t;
Nexts(tmp,t);
}
while (tmp != this);
(*prec).Z(precz) = (z+i)%3;
}
}
}
// Stacca la faccia corrente dalla catena di facce incidenti sul vertice z,
// NOTA funziona SOLO per la topologia VF!!!
// usata nelle classi di collapse
void VFDetach(int z)
{
if(V(z)->Fp()==this )
{
int fz = V(z)->Zp();
V(z)->Fp() = (face_from_vert_type *) F(fz);
V(z)->Zp() = Z(fz);
}
else
{
VEdgePosB<FACE_TYPE> x,y;
x.f = V(z)->Fp();
x.z = V(z)->Zp();
for(;;)
{
y = x;
x.NextF();
assert(x.f!=0);
if(x.f==this)
{
y.f->F(y.z) = F(z);
y.f->Z(y.z) = Z(z);
break;
}
}
}
}
} // end namespace
#endif