2011-04-01 18:25:49 +02:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright ( C ) 2004 \ / ) \ / *
* Visual Computing Lab / \ / | *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved . *
* *
* This program is free software ; you can redistribute it and / or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation ; either version 2 of the License , or *
* ( at your option ) any later version . *
* *
* This program is distributed in the hope that it will be useful , *
* but WITHOUT ANY WARRANTY ; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the *
* GNU General Public License ( http : //www.gnu.org/licenses/gpl.txt) *
* for more details . *
* *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/****************************************************************************
History
$ Log : not supported by cvs2svn $
Revision 1.8 2008 / 05 / 14 10 : 03 : 29 ganovelli
Point3f - > Coordtype
Revision 1.7 2008 / 04 / 23 16 : 37 : 15 onnis
VertexCurvature method added .
Revision 1.6 2008 / 04 / 04 10 : 26 : 12 cignoni
Cleaned up names , now Kg ( ) gives back Gaussian Curvature ( k1 * k2 ) , while Kh ( ) gives back Mean Curvature 1 / 2 ( k1 + k2 )
Revision 1.5 2008 / 03 / 25 11 : 00 : 56 ganovelli
fixed bugs sign of principal direction and mean curvature value
Revision 1.4 2008 / 03 / 17 11 : 29 : 59 ganovelli
taubin and desbrun estimates added ( - > see vcg / simplex / vertex / component . h [ component_ocf . h | component_occ . h ]
Revision 1.3 2006 / 02 / 27 18 : 02 : 57 ponchio
Area - > doublearea / 2
added some typename
Revision 1.2 2005 / 10 / 25 09 : 17 : 41 spinelli
correct IsBorder
Revision 1.1 2005 / 02 / 22 16 : 40 : 29 ganovelli
created . This version writes the gaussian curvature on the Q ( ) member of
the vertex
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# ifndef VCGLIB_UPDATE_CURVATURE_
# define VCGLIB_UPDATE_CURVATURE_
# include <vcg/space/index/grid_static_ptr.h>
# include <vcg/math/base.h>
# include <vcg/math/matrix.h>
# include <vcg/simplex/face/topology.h>
# include <vcg/simplex/face/pos.h>
# include <vcg/simplex/face/jumping_pos.h>
# include <vcg/container/simple_temporary_data.h>
2011-04-01 19:06:03 +02:00
# include <vcg/complex/algorithms/update/normal.h>
# include <vcg/complex/algorithms/point_sampling.h>
# include <vcg/complex/append.h>
# include <vcg/complex/algorithms/intersection.h>
# include <vcg/complex/algorithms/inertia.h>
2011-04-01 18:25:49 +02:00
# include <vcg/math/matrix33.h>
namespace vcg {
namespace tri {
/// \ingroup trimesh
2011-04-01 19:06:03 +02:00
/// \headerfile curvature.h vcg/complex/algorithms/update/curvature.h
2011-04-01 18:25:49 +02:00
/// \brief Management, updating and computation of per-vertex and per-face normals.
/**
This class is used to compute or update the normals that can be stored in the vertex or face component of a mesh .
*/
template < class MeshType >
class UpdateCurvature
{
public :
typedef typename MeshType : : FaceType FaceType ;
typedef typename MeshType : : FacePointer FacePointer ;
typedef typename MeshType : : FaceIterator FaceIterator ;
typedef typename MeshType : : VertexIterator VertexIterator ;
typedef typename MeshType : : VertContainer VertContainer ;
typedef typename MeshType : : VertexType VertexType ;
typedef typename MeshType : : VertexPointer VertexPointer ;
typedef vcg : : face : : VFIterator < FaceType > VFIteratorType ;
typedef typename MeshType : : CoordType CoordType ;
typedef typename CoordType : : ScalarType ScalarType ;
private :
struct AdjVertex {
VertexType * vert ;
float doubleArea ;
bool isBorder ;
} ;
public :
/// \brief Compute principal direction and magniuto of curvature.
/*
Compute principal direction and magniuto of curvature as describe in the paper :
@ InProceedings { bb33922 ,
author = " G. Taubin " ,
title = " Estimating the Tensor of Curvature of a Surface from a
Polyhedral Approximation " ,
booktitle = " International Conference on Computer Vision " ,
year = " 1995 " ,
pages = " 902--907 " ,
URL = " http://dx.doi.org/10.1109/ICCV.1995.466840 " ,
bibsource = " http://www.visionbib.com/bibliography/describe440.html#TT32253 " ,
*/
static void PrincipalDirections ( MeshType & m ) {
assert ( m . HasVFTopology ( ) ) ;
vcg : : tri : : UpdateNormals < MeshType > : : PerVertexNormalized ( m ) ;
VertexIterator vi ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi ) {
if ( ! ( * vi ) . IsD ( ) & & ( * vi ) . VFp ( ) ! = NULL ) {
VertexType * central_vertex = & ( * vi ) ;
std : : vector < float > weights ;
std : : vector < AdjVertex > vertices ;
vcg : : face : : JumpingPos < FaceType > pos ( ( * vi ) . VFp ( ) , central_vertex ) ;
// firstV is the first vertex of the 1ring neighboorhood
VertexType * firstV = pos . VFlip ( ) ;
VertexType * tempV ;
float totalDoubleAreaSize = 0.0f ;
// compute the area of each triangle around the central vertex as well as their total area
do
{
// this bring the pos to the next triangle counterclock-wise
pos . FlipF ( ) ;
pos . FlipE ( ) ;
// tempV takes the next vertex in the 1ring neighborhood
tempV = pos . VFlip ( ) ;
assert ( tempV ! = central_vertex ) ;
AdjVertex v ;
v . isBorder = pos . IsBorder ( ) ;
v . vert = tempV ;
v . doubleArea = vcg : : DoubleArea ( * pos . F ( ) ) ;
totalDoubleAreaSize + = v . doubleArea ;
vertices . push_back ( v ) ;
}
while ( tempV ! = firstV ) ;
// compute the weights for the formula computing matrix M
for ( size_t i = 0 ; i < vertices . size ( ) ; + + i ) {
if ( vertices [ i ] . isBorder ) {
weights . push_back ( vertices [ i ] . doubleArea / totalDoubleAreaSize ) ;
} else {
weights . push_back ( 0.5f * ( vertices [ i ] . doubleArea + vertices [ ( i - 1 ) % vertices . size ( ) ] . doubleArea ) / totalDoubleAreaSize ) ;
}
assert ( weights . back ( ) < 1.0f ) ;
}
// compute I-NN^t to be used for computing the T_i's
Matrix33 < ScalarType > Tp ;
for ( int i = 0 ; i < 3 ; + + i )
Tp [ i ] [ i ] = 1.0f - powf ( central_vertex - > cN ( ) [ i ] , 2 ) ;
Tp [ 0 ] [ 1 ] = Tp [ 1 ] [ 0 ] = - 1.0f * ( central_vertex - > N ( ) [ 0 ] * central_vertex - > cN ( ) [ 1 ] ) ;
Tp [ 1 ] [ 2 ] = Tp [ 2 ] [ 1 ] = - 1.0f * ( central_vertex - > cN ( ) [ 1 ] * central_vertex - > cN ( ) [ 2 ] ) ;
Tp [ 0 ] [ 2 ] = Tp [ 2 ] [ 0 ] = - 1.0f * ( central_vertex - > cN ( ) [ 0 ] * central_vertex - > cN ( ) [ 2 ] ) ;
// for all neighbors vi compute the directional curvatures k_i and the T_i
// compute M by summing all w_i k_i T_i T_i^t
Matrix33 < ScalarType > tempMatrix ;
Matrix33 < ScalarType > M ;
M . SetZero ( ) ;
for ( size_t i = 0 ; i < vertices . size ( ) ; + + i ) {
CoordType edge = ( central_vertex - > cP ( ) - vertices [ i ] . vert - > cP ( ) ) ;
float curvature = ( 2.0f * ( central_vertex - > cN ( ) . dot ( edge ) ) ) / edge . SquaredNorm ( ) ;
CoordType T = ( Tp * edge ) . normalized ( ) ;
tempMatrix . ExternalProduct ( T , T ) ;
M + = tempMatrix * weights [ i ] * curvature ;
}
// compute vector W for the Householder matrix
CoordType W ;
CoordType e1 ( 1.0f , 0.0f , 0.0f ) ;
if ( ( e1 - central_vertex - > cN ( ) ) . SquaredNorm ( ) > ( e1 + central_vertex - > cN ( ) ) . SquaredNorm ( ) )
W = e1 - central_vertex - > cN ( ) ;
else
W = e1 + central_vertex - > cN ( ) ;
W . Normalize ( ) ;
// compute the Householder matrix I - 2WW^t
Matrix33 < ScalarType > Q ;
Q . SetIdentity ( ) ;
tempMatrix . ExternalProduct ( W , W ) ;
Q - = tempMatrix * 2.0f ;
// compute matrix Q^t M Q
Matrix33 < ScalarType > QtMQ = ( Q . transpose ( ) * M * Q ) ;
CoordType bl = Q . GetColumn ( 0 ) ;
CoordType T1 = Q . GetColumn ( 1 ) ;
CoordType T2 = Q . GetColumn ( 2 ) ;
// find sin and cos for the Givens rotation
float s , c ;
// Gabriel Taubin hint and Valentino Fiorin impementation
float alpha = QtMQ [ 1 ] [ 1 ] - QtMQ [ 2 ] [ 2 ] ;
float beta = QtMQ [ 2 ] [ 1 ] ;
float h [ 2 ] ;
float delta = sqrtf ( 4.0f * powf ( alpha , 2 ) + 16.0f * powf ( beta , 2 ) ) ;
h [ 0 ] = ( 2.0f * alpha + delta ) / ( 2.0f * beta ) ;
h [ 1 ] = ( 2.0f * alpha - delta ) / ( 2.0f * beta ) ;
float t [ 2 ] ;
float best_c , best_s ;
float min_error = std : : numeric_limits < ScalarType > : : infinity ( ) ;
for ( int i = 0 ; i < 2 ; i + + )
{
delta = sqrtf ( powf ( h [ i ] , 2 ) + 4.0f ) ;
t [ 0 ] = ( h [ i ] + delta ) / 2.0f ;
t [ 1 ] = ( h [ i ] - delta ) / 2.0f ;
for ( int j = 0 ; j < 2 ; j + + )
{
float squared_t = powf ( t [ j ] , 2 ) ;
float denominator = 1.0f + squared_t ;
s = ( 2.0f * t [ j ] ) / denominator ;
c = ( 1 - squared_t ) / denominator ;
float approximation = c * s * alpha + ( powf ( c , 2 ) - powf ( s , 2 ) ) * beta ;
float angle_similarity = fabs ( acosf ( c ) / asinf ( s ) ) ;
float error = fabs ( 1.0f - angle_similarity ) + fabs ( approximation ) ;
if ( error < min_error )
{
min_error = error ;
best_c = c ;
best_s = s ;
}
}
}
c = best_c ;
s = best_s ;
vcg : : ndim : : MatrixMNf minor2x2 ( 2 , 2 ) ;
vcg : : ndim : : MatrixMNf S ( 2 , 2 ) ;
// diagonalize M
minor2x2 [ 0 ] [ 0 ] = QtMQ [ 1 ] [ 1 ] ;
minor2x2 [ 0 ] [ 1 ] = QtMQ [ 1 ] [ 2 ] ;
minor2x2 [ 1 ] [ 0 ] = QtMQ [ 2 ] [ 1 ] ;
minor2x2 [ 1 ] [ 1 ] = QtMQ [ 2 ] [ 2 ] ;
S [ 0 ] [ 0 ] = S [ 1 ] [ 1 ] = c ;
S [ 0 ] [ 1 ] = s ;
S [ 1 ] [ 0 ] = - 1.0f * s ;
vcg : : ndim : : MatrixMNf StMS ( S . transpose ( ) * minor2x2 * S ) ;
// compute curvatures and curvature directions
float Principal_Curvature1 = ( 3.0f * StMS [ 0 ] [ 0 ] ) - StMS [ 1 ] [ 1 ] ;
float Principal_Curvature2 = ( 3.0f * StMS [ 1 ] [ 1 ] ) - StMS [ 0 ] [ 0 ] ;
CoordType Principal_Direction1 = T1 * c - T2 * s ;
CoordType Principal_Direction2 = T1 * s + T2 * c ;
( * vi ) . PD1 ( ) = Principal_Direction1 ;
( * vi ) . PD2 ( ) = Principal_Direction2 ;
( * vi ) . K1 ( ) = Principal_Curvature1 ;
( * vi ) . K2 ( ) = Principal_Curvature2 ;
}
}
}
class AreaData
{
public :
float A ;
} ;
/** Curvature meseaure as described in the paper:
Robust principal curvatures on Multiple Scales , Yong - Liang Yang , Yu - Kun Lai , Shi - Min Hu Helmut Pottmann
SGP 2004
If pointVSfaceInt = = true the covariance is computed by montecarlo sampling on the mesh ( faster )
If pointVSfaceInt = = false the covariance is computed by ( analytic ) integration over the surface ( slower )
*/
typedef vcg : : GridStaticPtr < FaceType , ScalarType > MeshGridType ;
typedef vcg : : GridStaticPtr < VertexType , ScalarType > PointsGridType ;
static void PrincipalDirectionsPCA ( MeshType & m , ScalarType r , bool pointVSfaceInt = true , vcg : : CallBackPos * cb = NULL ) {
std : : vector < VertexType * > closests ;
std : : vector < ScalarType > distances ;
std : : vector < CoordType > points ;
VertexIterator vi ;
ScalarType area ;
MeshType tmpM ;
typename std : : vector < CoordType > : : iterator ii ;
vcg : : tri : : TrivialSampler < MeshType > vs ;
MeshGridType mGrid ;
PointsGridType pGrid ;
// Fill the grid used
if ( pointVSfaceInt ) {
area = Stat < MeshType > : : ComputeMeshArea ( m ) ;
vcg : : tri : : SurfaceSampling < MeshType , vcg : : tri : : TrivialSampler < MeshType > > : : Montecarlo ( m , vs , 1000 * area / ( 2 * M_PI * r * r ) ) ;
vi = vcg : : tri : : Allocator < MeshType > : : AddVertices ( tmpM , m . vert . size ( ) ) ;
for ( size_t y = 0 ; y < m . vert . size ( ) ; + + y , + + vi ) ( * vi ) . P ( ) = m . vert [ y ] . P ( ) ;
pGrid . Set ( tmpM . vert . begin ( ) , tmpM . vert . end ( ) ) ;
} else { mGrid . Set ( m . face . begin ( ) , m . face . end ( ) ) ; }
int jj = 0 ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi ) {
vcg : : Matrix33 < ScalarType > A , eigenvectors ;
vcg : : Point3 < ScalarType > bp , eigenvalues ;
int nrot ;
// sample the neighborhood
if ( pointVSfaceInt )
{
vcg : : tri : : GetInSphereVertex <
MeshType ,
PointsGridType , std : : vector < VertexType * > ,
std : : vector < ScalarType > ,
std : : vector < CoordType > > ( tmpM , pGrid , ( * vi ) . cP ( ) , r , closests , distances , points ) ;
A . Covariance ( points , bp ) ;
A * = area * area / 1000 ;
}
else {
IntersectionBallMesh < MeshType , ScalarType > ( m , vcg : : Sphere3 < ScalarType > ( ( * vi ) . cP ( ) , r ) , tmpM ) ;
vcg : : Point3 < ScalarType > _bary ;
vcg : : tri : : Inertia < MeshType > : : Covariance ( tmpM , _bary , A ) ;
}
Jacobi ( A , eigenvalues , eigenvectors , nrot ) ;
// get the estimate of curvatures from eigenvalues and eigenvectors
// find the 2 most tangent eigenvectors (by finding the one closest to the normal)
int best = 0 ; ScalarType bestv = fabs ( ( * vi ) . cN ( ) . dot ( eigenvectors . GetColumn ( 0 ) . normalized ( ) ) ) ;
for ( int i = 1 ; i < 3 ; + + i ) {
ScalarType prod = fabs ( ( * vi ) . cN ( ) . dot ( eigenvectors . GetColumn ( i ) . normalized ( ) ) ) ;
if ( prod > bestv ) { bestv = prod ; best = i ; }
}
( * vi ) . PD1 ( ) = eigenvectors . GetColumn ( ( best + 1 ) % 3 ) . normalized ( ) ;
( * vi ) . PD2 ( ) = eigenvectors . GetColumn ( ( best + 2 ) % 3 ) . normalized ( ) ;
// project them to the plane identified by the normal
vcg : : Matrix33 < ScalarType > rot ;
ScalarType angle = acos ( ( * vi ) . PD1 ( ) . dot ( ( * vi ) . N ( ) ) ) ;
rot . SetRotateRad ( - ( M_PI * 0.5 - angle ) , ( * vi ) . PD1 ( ) ^ ( * vi ) . N ( ) ) ;
( * vi ) . PD1 ( ) = rot * ( * vi ) . PD1 ( ) ;
angle = acos ( ( * vi ) . PD2 ( ) . dot ( ( * vi ) . N ( ) ) ) ;
rot . SetRotateRad ( - ( M_PI * 0.5 - angle ) , ( * vi ) . PD2 ( ) ^ ( * vi ) . N ( ) ) ;
( * vi ) . PD2 ( ) = rot * ( * vi ) . PD2 ( ) ;
// copmutes the curvature values
const ScalarType r5 = r * r * r * r * r ;
const ScalarType r6 = r * r5 ;
( * vi ) . K1 ( ) = ( 2.0 / 5.0 ) * ( 4.0 * M_PI * r5 + 15 * eigenvalues [ ( best + 2 ) % 3 ] - 45.0 * eigenvalues [ ( best + 1 ) % 3 ] ) / ( M_PI * r6 ) ;
( * vi ) . K2 ( ) = ( 2.0 / 5.0 ) * ( 4.0 * M_PI * r5 + 15 * eigenvalues [ ( best + 1 ) % 3 ] - 45.0 * eigenvalues [ ( best + 2 ) % 3 ] ) / ( M_PI * r6 ) ;
if ( ( * vi ) . K1 ( ) < ( * vi ) . K2 ( ) ) { std : : swap ( ( * vi ) . K1 ( ) , ( * vi ) . K2 ( ) ) ;
std : : swap ( ( * vi ) . PD1 ( ) , ( * vi ) . PD2 ( ) ) ;
if ( cb )
{
( * cb ) ( int ( 100.0f * ( float ) jj / ( float ) m . vn ) , " Vertices Analysis " ) ;
+ + jj ;
} }
}
}
/// \brief Computes the discrete gaussian curvature.
/** For further details, please, refer to: \n
- < em > Discrete Differential - Geometry Operators for Triangulated 2 - Manifolds Mark Meyer ,
Mathieu Desbrun , Peter Schroder , Alan H . Barr VisMath ' 02 , Berlin < / em >
*/
static void MeanAndGaussian ( MeshType & m )
{
assert ( HasFFAdjacency ( m ) ) ;
float area0 , area1 , area2 , angle0 , angle1 , angle2 ;
FaceIterator fi ;
VertexIterator vi ;
typename MeshType : : CoordType e01v , e12v , e20v ;
SimpleTempData < VertContainer , AreaData > TDAreaPtr ( m . vert ) ;
SimpleTempData < VertContainer , typename MeshType : : CoordType > TDContr ( m . vert ) ;
vcg : : tri : : UpdateNormals < MeshType > : : PerVertexNormalized ( m ) ;
//Compute AreaMix in H (vale anche per K)
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi ) if ( ! ( * vi ) . IsD ( ) )
{
( TDAreaPtr ) [ * vi ] . A = 0.0 ;
( TDContr ) [ * vi ] = typename MeshType : : CoordType ( 0.0 , 0.0 , 0.0 ) ;
( * vi ) . Kh ( ) = 0.0 ;
( * vi ) . Kg ( ) = ( float ) ( 2.0 * M_PI ) ;
}
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; + + fi ) if ( ! ( * fi ) . IsD ( ) )
{
// angles
angle0 = math : : Abs ( Angle ( ( * fi ) . P ( 1 ) - ( * fi ) . P ( 0 ) , ( * fi ) . P ( 2 ) - ( * fi ) . P ( 0 ) ) ) ;
angle1 = math : : Abs ( Angle ( ( * fi ) . P ( 0 ) - ( * fi ) . P ( 1 ) , ( * fi ) . P ( 2 ) - ( * fi ) . P ( 1 ) ) ) ;
angle2 = M_PI - ( angle0 + angle1 ) ;
if ( ( angle0 < M_PI / 2 ) & & ( angle1 < M_PI / 2 ) & & ( angle2 < M_PI / 2 ) ) // triangolo non ottuso
{
float e01 = SquaredDistance ( ( * fi ) . V ( 1 ) - > cP ( ) , ( * fi ) . V ( 0 ) - > cP ( ) ) ;
float e12 = SquaredDistance ( ( * fi ) . V ( 2 ) - > cP ( ) , ( * fi ) . V ( 1 ) - > cP ( ) ) ;
float e20 = SquaredDistance ( ( * fi ) . V ( 0 ) - > cP ( ) , ( * fi ) . V ( 2 ) - > cP ( ) ) ;
area0 = ( e20 * ( 1.0 / tan ( angle1 ) ) + e01 * ( 1.0 / tan ( angle2 ) ) ) / 8.0 ;
area1 = ( e01 * ( 1.0 / tan ( angle2 ) ) + e12 * ( 1.0 / tan ( angle0 ) ) ) / 8.0 ;
area2 = ( e12 * ( 1.0 / tan ( angle0 ) ) + e20 * ( 1.0 / tan ( angle1 ) ) ) / 8.0 ;
( TDAreaPtr ) [ ( * fi ) . V ( 0 ) ] . A + = area0 ;
( TDAreaPtr ) [ ( * fi ) . V ( 1 ) ] . A + = area1 ;
( TDAreaPtr ) [ ( * fi ) . V ( 2 ) ] . A + = area2 ;
}
else // obtuse
{
if ( angle0 > = M_PI / 2 )
{
( TDAreaPtr ) [ ( * fi ) . V ( 0 ) ] . A + = vcg : : DoubleArea < typename MeshType : : FaceType > ( ( * fi ) ) / 4.0 ;
( TDAreaPtr ) [ ( * fi ) . V ( 1 ) ] . A + = vcg : : DoubleArea < typename MeshType : : FaceType > ( ( * fi ) ) / 8.0 ;
( TDAreaPtr ) [ ( * fi ) . V ( 2 ) ] . A + = vcg : : DoubleArea < typename MeshType : : FaceType > ( ( * fi ) ) / 8.0 ;
}
else if ( angle1 > = M_PI / 2 )
{
( TDAreaPtr ) [ ( * fi ) . V ( 0 ) ] . A + = vcg : : DoubleArea < typename MeshType : : FaceType > ( ( * fi ) ) / 8.0 ;
( TDAreaPtr ) [ ( * fi ) . V ( 1 ) ] . A + = vcg : : DoubleArea < typename MeshType : : FaceType > ( ( * fi ) ) / 4.0 ;
( TDAreaPtr ) [ ( * fi ) . V ( 2 ) ] . A + = vcg : : DoubleArea < typename MeshType : : FaceType > ( ( * fi ) ) / 8.0 ;
}
else
{
( TDAreaPtr ) [ ( * fi ) . V ( 0 ) ] . A + = vcg : : DoubleArea < typename MeshType : : FaceType > ( ( * fi ) ) / 8.0 ;
( TDAreaPtr ) [ ( * fi ) . V ( 1 ) ] . A + = vcg : : DoubleArea < typename MeshType : : FaceType > ( ( * fi ) ) / 8.0 ;
( TDAreaPtr ) [ ( * fi ) . V ( 2 ) ] . A + = vcg : : DoubleArea < typename MeshType : : FaceType > ( ( * fi ) ) / 4.0 ;
}
}
}
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; + + fi ) if ( ! ( * fi ) . IsD ( ) )
{
angle0 = math : : Abs ( Angle ( ( * fi ) . P ( 1 ) - ( * fi ) . P ( 0 ) , ( * fi ) . P ( 2 ) - ( * fi ) . P ( 0 ) ) ) ;
angle1 = math : : Abs ( Angle ( ( * fi ) . P ( 0 ) - ( * fi ) . P ( 1 ) , ( * fi ) . P ( 2 ) - ( * fi ) . P ( 1 ) ) ) ;
angle2 = M_PI - ( angle0 + angle1 ) ;
// Skip degenerate triangles.
if ( angle0 = = 0 | | angle1 = = 0 | | angle1 = = 0 ) continue ;
e01v = ( ( * fi ) . V ( 1 ) - > cP ( ) - ( * fi ) . V ( 0 ) - > cP ( ) ) ;
e12v = ( ( * fi ) . V ( 2 ) - > cP ( ) - ( * fi ) . V ( 1 ) - > cP ( ) ) ;
e20v = ( ( * fi ) . V ( 0 ) - > cP ( ) - ( * fi ) . V ( 2 ) - > cP ( ) ) ;
TDContr [ ( * fi ) . V ( 0 ) ] + = ( e20v * ( 1.0 / tan ( angle1 ) ) - e01v * ( 1.0 / tan ( angle2 ) ) ) / 4.0 ;
TDContr [ ( * fi ) . V ( 1 ) ] + = ( e01v * ( 1.0 / tan ( angle2 ) ) - e12v * ( 1.0 / tan ( angle0 ) ) ) / 4.0 ;
TDContr [ ( * fi ) . V ( 2 ) ] + = ( e12v * ( 1.0 / tan ( angle0 ) ) - e20v * ( 1.0 / tan ( angle1 ) ) ) / 4.0 ;
( * fi ) . V ( 0 ) - > Kg ( ) - = angle0 ;
( * fi ) . V ( 1 ) - > Kg ( ) - = angle1 ;
( * fi ) . V ( 2 ) - > Kg ( ) - = angle2 ;
for ( int i = 0 ; i < 3 ; i + + )
{
if ( vcg : : face : : IsBorder ( ( * fi ) , i ) )
{
CoordType e1 , e2 ;
vcg : : face : : Pos < FaceType > hp ( & * fi , i , ( * fi ) . V ( i ) ) ;
vcg : : face : : Pos < FaceType > hp1 = hp ;
hp1 . FlipV ( ) ;
e1 = hp1 . v - > cP ( ) - hp . v - > cP ( ) ;
hp1 . FlipV ( ) ;
hp1 . NextB ( ) ;
e2 = hp1 . v - > cP ( ) - hp . v - > cP ( ) ;
( * fi ) . V ( i ) - > Kg ( ) - = math : : Abs ( Angle ( e1 , e2 ) ) ;
}
}
}
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi ) if ( ! ( * vi ) . IsD ( ) /*&& !(*vi).IsB()*/ )
{
if ( ( TDAreaPtr ) [ * vi ] . A < = std : : numeric_limits < ScalarType > : : epsilon ( ) )
{
( * vi ) . Kh ( ) = 0 ;
( * vi ) . Kg ( ) = 0 ;
}
else
{
( * vi ) . Kh ( ) = ( ( ( TDContr ) [ * vi ] . dot ( ( * vi ) . cN ( ) ) > 0 ) ? 1.0 : - 1.0 ) * ( ( TDContr ) [ * vi ] / ( TDAreaPtr ) [ * vi ] . A ) . Norm ( ) ;
( * vi ) . Kg ( ) / = ( TDAreaPtr ) [ * vi ] . A ;
}
}
}
/// \brief Update the mean and the gaussian curvature of a vertex.
/**
The function uses the VF adiacency to walk around the vertex .
\ return It will return the voronoi area around the vertex . If ( norm = = true ) the mean and the gaussian curvature are normalized .
Based on the paper < a href = " http://www2.in.tu-clausthal.de/~hormann/papers/Dyn.2001.OTU.pdf " > < em > " Optimizing 3d triangulations using discrete curvature analysis " < / em > < / a >
*/
static float VertexCurvature ( VertexPointer v , bool norm = true )
{
// VFAdjacency required!
assert ( FaceType : : HasVFAdjacency ( ) ) ;
assert ( VertexType : : HasVFAdjacency ( ) ) ;
VFIteratorType vfi ( v ) ;
float A = 0 ;
v - > Kh ( ) = 0 ;
v - > Kg ( ) = 2 * M_PI ;
while ( ! vfi . End ( ) ) {
if ( ! vfi . F ( ) - > IsD ( ) ) {
FacePointer f = vfi . F ( ) ;
int i = vfi . I ( ) ;
VertexPointer v0 = f - > V0 ( i ) , v1 = f - > V1 ( i ) , v2 = f - > V2 ( i ) ;
float ang0 = math : : Abs ( Angle ( v1 - > P ( ) - v0 - > P ( ) , v2 - > P ( ) - v0 - > P ( ) ) ) ;
float ang1 = math : : Abs ( Angle ( v0 - > P ( ) - v1 - > P ( ) , v2 - > P ( ) - v1 - > P ( ) ) ) ;
float ang2 = M_PI - ang0 - ang1 ;
float s01 = SquaredDistance ( v1 - > P ( ) , v0 - > P ( ) ) ;
float s02 = SquaredDistance ( v2 - > P ( ) , v0 - > P ( ) ) ;
// voronoi cell of current vertex
if ( ang0 > = M_PI / 2 )
A + = ( 0.5f * DoubleArea ( * f ) - ( s01 * tan ( ang1 ) + s02 * tan ( ang2 ) ) / 8.0 ) ;
else if ( ang1 > = M_PI / 2 )
A + = ( s01 * tan ( ang0 ) ) / 8.0 ;
else if ( ang2 > = M_PI / 2 )
A + = ( s02 * tan ( ang0 ) ) / 8.0 ;
else // non obctuse triangle
A + = ( ( s02 / tan ( ang1 ) ) + ( s01 / tan ( ang2 ) ) ) / 8.0 ;
// gaussian curvature update
v - > Kg ( ) - = ang0 ;
// mean curvature update
ang1 = math : : Abs ( Angle ( f - > N ( ) , v1 - > N ( ) ) ) ;
ang2 = math : : Abs ( Angle ( f - > N ( ) , v2 - > N ( ) ) ) ;
v - > Kh ( ) + = ( ( math : : Sqrt ( s01 ) / 2.0 ) * ang1 +
( math : : Sqrt ( s02 ) / 2.0 ) * ang2 ) ;
}
+ + vfi ;
}
v - > Kh ( ) / = 4.0f ;
if ( norm ) {
if ( A < = std : : numeric_limits < float > : : epsilon ( ) ) {
v - > Kh ( ) = 0 ;
v - > Kg ( ) = 0 ;
}
else {
v - > Kh ( ) / = A ;
v - > Kg ( ) / = A ;
}
}
return A ;
}
static void VertexCurvature ( MeshType & m ) {
for ( VertexIterator vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi )
VertexCurvature ( & * vi , false ) ;
}
/*
Compute principal curvature directions and value with normal cycle :
@ inproceedings { CohMor03 ,
author = { Cohen - Steiner , David and Morvan , Jean - Marie } ,
booktitle = { SCG ' 03 : Proceedings of the nineteenth annual symposium on Computational geometry } ,
title - { Restricted delaunay triangulations and normal cycle }
year = { 2003 }
}
*/
static void PrincipalDirectionsNormalCycles ( MeshType & m ) {
assert ( VertexType : : HasVFAdjacency ( ) ) ;
assert ( FaceType : : HasFFAdjacency ( ) ) ;
assert ( FaceType : : HasFaceNormal ( ) ) ;
typename MeshType : : VertexIterator vi ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi )
if ( ! ( ( * vi ) . IsD ( ) ) ) {
vcg : : Matrix33 < ScalarType > m33 ; m33 . SetZero ( ) ;
face : : JumpingPos < typename MeshType : : FaceType > p ( ( * vi ) . VFp ( ) , & ( * vi ) ) ;
p . FlipE ( ) ;
typename MeshType : : VertexType * firstv = p . VFlip ( ) ;
assert ( p . F ( ) - > V ( p . VInd ( ) ) = = & ( * vi ) ) ;
do {
if ( p . F ( ) ! = p . FFlip ( ) ) {
Point3 < ScalarType > normalized_edge = p . F ( ) - > V ( p . F ( ) - > Next ( p . VInd ( ) ) ) - > cP ( ) - ( * vi ) . P ( ) ;
ScalarType edge_length = normalized_edge . Norm ( ) ;
normalized_edge / = edge_length ;
Point3 < ScalarType > n1 = p . F ( ) - > cN ( ) ; n1 . Normalize ( ) ;
Point3 < ScalarType > n2 = p . FFlip ( ) - > cN ( ) ; n2 . Normalize ( ) ;
ScalarType n1n2 = ( n1 ^ n2 ) . dot ( normalized_edge ) ;
n1n2 = std : : max ( std : : min ( ScalarType ( 1.0 ) , n1n2 ) , ScalarType ( - 1.0 ) ) ;
ScalarType beta = math : : Asin ( n1n2 ) ;
m33 [ 0 ] [ 0 ] + = beta * edge_length * normalized_edge [ 0 ] * normalized_edge [ 0 ] ;
m33 [ 0 ] [ 1 ] + = beta * edge_length * normalized_edge [ 1 ] * normalized_edge [ 0 ] ;
m33 [ 1 ] [ 1 ] + = beta * edge_length * normalized_edge [ 1 ] * normalized_edge [ 1 ] ;
m33 [ 0 ] [ 2 ] + = beta * edge_length * normalized_edge [ 2 ] * normalized_edge [ 0 ] ;
m33 [ 1 ] [ 2 ] + = beta * edge_length * normalized_edge [ 2 ] * normalized_edge [ 1 ] ;
m33 [ 2 ] [ 2 ] + = beta * edge_length * normalized_edge [ 2 ] * normalized_edge [ 2 ] ;
}
p . NextFE ( ) ;
} while ( firstv ! = p . VFlip ( ) ) ;
if ( m33 . Determinant ( ) = = 0.0 ) { // degenerate case
( * vi ) . K1 ( ) = ( * vi ) . K2 ( ) = 0.0 ; continue ; }
m33 [ 1 ] [ 0 ] = m33 [ 0 ] [ 1 ] ;
m33 [ 2 ] [ 0 ] = m33 [ 0 ] [ 2 ] ;
m33 [ 2 ] [ 1 ] = m33 [ 1 ] [ 2 ] ;
Point3 < ScalarType > lambda ;
Matrix33 < ScalarType > vect ;
int n_rot ;
Jacobi ( m33 , lambda , vect , n_rot ) ;
vect . transposeInPlace ( ) ;
ScalarType normal = std : : numeric_limits < ScalarType > : : min ( ) ;
int normI = 0 ;
for ( int i = 0 ; i < 3 ; + + i )
if ( fabs ( ( * vi ) . N ( ) . Normalize ( ) . dot ( vect . GetRow ( i ) ) ) > normal )
{
normal = fabs ( ( * vi ) . N ( ) . Normalize ( ) . dot ( vect . GetRow ( i ) ) ) ;
normI = i ;
}
int maxI = ( normI + 2 ) % 3 ;
int minI = ( normI + 1 ) % 3 ;
if ( fabs ( lambda [ maxI ] ) < fabs ( lambda [ minI ] ) ) std : : swap ( maxI , minI ) ;
( * vi ) . PD1 ( ) = * ( Point3 < ScalarType > * ) ( & vect [ maxI ] [ 0 ] ) ;
( * vi ) . PD2 ( ) = * ( Point3 < ScalarType > * ) ( & vect [ minI ] [ 0 ] ) ;
( * vi ) . K1 ( ) = lambda [ maxI ] ;
( * vi ) . K2 ( ) = lambda [ minI ] ;
}
}
} ;
}
}
# endif