2011-04-01 18:25:49 +02:00
|
|
|
/****************************************************************************
|
|
|
|
* VCGLib o o *
|
|
|
|
* Visual and Computer Graphics Library o o *
|
|
|
|
* _ O _ *
|
|
|
|
* Copyright(C) 2004 \/)\/ *
|
|
|
|
* Visual Computing Lab /\/| *
|
|
|
|
* ISTI - Italian National Research Council | *
|
|
|
|
* \ *
|
|
|
|
* All rights reserved. *
|
|
|
|
* *
|
|
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
|
|
* it under the terms of the GNU General Public License as published by *
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
|
|
* (at your option) any later version. *
|
|
|
|
* *
|
|
|
|
* This program is distributed in the hope that it will be useful, *
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
|
|
* for more details. *
|
|
|
|
* *
|
|
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCG_TRI_UPDATE_QUALITY
|
|
|
|
#define __VCG_TRI_UPDATE_QUALITY
|
|
|
|
#include <vcg/simplex/face/pos.h>
|
|
|
|
#include <vcg/simplex/face/topology.h>
|
2011-04-01 19:06:03 +02:00
|
|
|
#include <vcg/complex/algorithms/update/flag.h>
|
|
|
|
#include <vcg/complex/algorithms/stat.h>
|
2011-04-01 18:25:49 +02:00
|
|
|
#include <algorithm>
|
|
|
|
#include <vector>
|
|
|
|
#include <stack>
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
namespace vcg {
|
|
|
|
namespace tri {
|
|
|
|
/// \ingroup trimesh
|
|
|
|
|
2011-04-01 19:06:03 +02:00
|
|
|
/// \headerfile quality.h vcg/complex/algorithms/update/quality.h
|
2011-04-01 18:25:49 +02:00
|
|
|
|
|
|
|
/// \brief Generation of per-vertex and per-face qualities.
|
|
|
|
/**
|
|
|
|
It works according to various strategy, like geodesic distance from the border (UpdateQuality::VertexGeodesicFromBorder) or curvature ecc.
|
|
|
|
This class is templated over the mesh and (like all other Update* classes) has only static members; Typical usage:
|
|
|
|
\code
|
|
|
|
MyMeshType m;
|
|
|
|
UpdateQuality<MyMeshType>::VertexGeodesicFromBorder(m);
|
|
|
|
\endcode
|
|
|
|
*/
|
|
|
|
|
|
|
|
template <class UpdateMeshType>
|
|
|
|
class UpdateQuality
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
typedef UpdateMeshType MeshType;
|
|
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
|
|
typedef typename MeshType::VertexType VertexType;
|
|
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
|
|
typedef typename MeshType::FaceType FaceType;
|
|
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
|
|
|
|
class VQualityHeap
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
float q;
|
|
|
|
VertexPointer p;
|
|
|
|
inline VQualityHeap( VertexPointer np )
|
|
|
|
{
|
|
|
|
q = np->Q();
|
|
|
|
p = np;
|
|
|
|
}
|
|
|
|
// Attenzione il minore e' maggiore
|
|
|
|
inline bool operator < ( const VQualityHeap & vq ) const { return q > vq.q; }
|
|
|
|
inline bool operator == ( const VQualityHeap & vq ) const { return q == vq.q; }
|
|
|
|
inline bool operator > ( const VQualityHeap & vq ) const { return q < vq.q; }
|
|
|
|
inline bool operator != ( const VQualityHeap & vq ) const { return q != vq.q; }
|
|
|
|
inline bool operator <= ( const VQualityHeap & vq ) const { return q >= vq.q; }
|
|
|
|
inline bool operator >= ( const VQualityHeap & vq ) const { return q <= vq.q; }
|
|
|
|
inline bool is_valid() const { return q==p->Q(); }
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// *** IMPORTANT REQUIREMENTS
|
|
|
|
// VF topology
|
|
|
|
// Border FLags
|
|
|
|
// tri::UpdateTopology<SMesh>::VertexFace(sm);
|
|
|
|
// tri::UpdateFlags<SMesh>::FaceBorderFromVF(sm);
|
|
|
|
//
|
|
|
|
// Calcola la qualita' come distanza geodesica dal bordo della mesh.
|
|
|
|
// Robusta funziona anche per mesh non manifold.
|
|
|
|
// La qualita' memorizzata indica la distanza assoluta dal bordo della mesh.
|
|
|
|
// Nota prima del 13/11/03 in alcuni casi rari SPT andava in loop perche' poteva capitare
|
|
|
|
// che per approx numeriche ben strane pw->Q() > pv->Q()+d ma durante la memorizzazione
|
|
|
|
// della nuova distanza essa rimanesse uguale a prima. Patchato rimettendo i vertici nello
|
|
|
|
// heap solo se migliorano la distanza di un epsilon == 1/100000 della mesh diag.
|
|
|
|
|
|
|
|
/// \brief Compute, for each vertex of the mesh the geodesic distance from the border of the mesh itself.
|
|
|
|
|
|
|
|
/**
|
|
|
|
It uses the classical Dijkstra Shortest Path Tree algorithm.
|
|
|
|
The geodesic distance is approximated by allowing to walk only along edges of the mesh.
|
|
|
|
|
|
|
|
\warning VF topology, Per Vertex Quality and border flags already computed (see UpdateFlags::FaceBorderFromVF and UpdateTopology::VertexFace);
|
|
|
|
|
|
|
|
*/
|
|
|
|
static void VertexGeodesicFromBorder(MeshType &m) // R1
|
|
|
|
{
|
|
|
|
//Requirements
|
2012-01-20 08:49:26 +01:00
|
|
|
assert(HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m));
|
|
|
|
assert(HasPerVertexQuality(m));
|
2011-04-01 18:25:49 +02:00
|
|
|
|
|
|
|
std::vector< VQualityHeap > heap;
|
|
|
|
VertexIterator v;
|
|
|
|
FaceIterator f;
|
|
|
|
int j;
|
|
|
|
|
|
|
|
for(v=m.vert.begin();v!=m.vert.end();++v)
|
|
|
|
(*v).Q() = -1;
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f) // Inserisco nell'heap i v di bordo
|
|
|
|
if(!(*f).IsD())
|
|
|
|
for(j=0;j<3;++j)
|
|
|
|
if( (*f).IsB(j) )
|
|
|
|
{
|
|
|
|
for(int k=0;k<2;++k)
|
|
|
|
{
|
|
|
|
VertexPointer pv = (*f).V((j+k)%3);
|
|
|
|
if( pv->Q()==-1 )
|
|
|
|
{
|
|
|
|
pv->Q() = 0;
|
|
|
|
heap.push_back(VQualityHeap(pv));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const ScalarType loc_eps=m.bbox.Diag()/ScalarType(100000);
|
|
|
|
while( heap.size()!=0 ) // Shortest path tree
|
|
|
|
{
|
|
|
|
VertexPointer pv;
|
|
|
|
std::pop_heap(heap.begin(),heap.end());
|
|
|
|
if( ! heap.back().is_valid() )
|
|
|
|
{
|
|
|
|
heap.pop_back();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
pv = heap.back().p;
|
|
|
|
heap.pop_back();
|
|
|
|
|
|
|
|
for(face::VFIterator<FaceType> vfi(pv) ; !vfi.End(); ++vfi )
|
|
|
|
{
|
|
|
|
for(int k=0;k<2;++k)
|
|
|
|
{
|
|
|
|
VertexPointer pw;
|
|
|
|
float d;
|
|
|
|
if(k==0) pw = vfi.f->V1(vfi.z);
|
|
|
|
else pw = vfi.f->V2(vfi.z);
|
|
|
|
d = Distance(pv->P(),pw->P());
|
|
|
|
if( pw->Q()==-1 || pw->Q() > pv->Q()+d + loc_eps)
|
|
|
|
{
|
|
|
|
pw->Q() = pv->Q()+d;
|
|
|
|
heap.push_back(VQualityHeap(pw));
|
|
|
|
std::push_heap(heap.begin(),heap.end());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for(v=m.vert.begin();v!=m.vert.end();++v)
|
|
|
|
if(v->Q()==-1)
|
|
|
|
v->Q() = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/** Assign to each vertex of the mesh a constant quality value. Useful for initialization.
|
|
|
|
*/
|
|
|
|
static void VertexConstant(MeshType &m, float q)
|
|
|
|
{
|
|
|
|
VertexIterator vi;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
|
|
|
(*vi).Q()=q;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Clamp each vertex of the mesh with a range of values.
|
|
|
|
*/
|
|
|
|
static void VertexClamp(MeshType &m, float qmin, float qmax)
|
|
|
|
{
|
|
|
|
VertexIterator vi;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
|
|
|
(*vi).Q()=std::min(qmax, std::max(qmin,(*vi).Q()));
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Normalize the vertex quality so that it fits in the specified range.
|
|
|
|
*/
|
|
|
|
static void VertexNormalize(MeshType &m, float qmin=0.0, float qmax=1.0)
|
|
|
|
{
|
|
|
|
ScalarType deltaRange = qmax-qmin;
|
|
|
|
std::pair<ScalarType,ScalarType> minmax = tri::Stat<MeshType>::ComputePerVertexQualityMinMax(m);
|
|
|
|
VertexIterator vi;
|
|
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
|
|
(*vi).Q() = qmin+deltaRange*((*vi).Q() - minmax.first)/(minmax.second - minmax.first);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Normalize the face quality so that it fits in the specified range.
|
|
|
|
*/
|
|
|
|
static void FaceNormalize(MeshType &m, float qmin=0.0, float qmax=1.0)
|
|
|
|
{
|
|
|
|
ScalarType deltaRange = qmax-qmin;
|
|
|
|
std::pair<ScalarType,ScalarType> minmax = tri::Stat<MeshType>::ComputePerFaceQualityMinMax(m);
|
|
|
|
FaceIterator fi;
|
|
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
|
|
(*fi).Q() = qmin+deltaRange*((*fi).Q() - minmax.first)/(minmax.second - minmax.first);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Assign to each face of the mesh a constant quality value. Useful for initialization.
|
|
|
|
*/
|
|
|
|
static void FaceConstant(MeshType &m, float q)
|
|
|
|
{
|
|
|
|
FaceIterator fi;
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
|
|
(*fi).Q()=q;
|
|
|
|
}
|
|
|
|
|
2011-05-18 13:37:18 +02:00
|
|
|
/** Assign to each face of the mesh its double area.
|
|
|
|
*/
|
|
|
|
static void FaceArea(MeshType &m)
|
|
|
|
{
|
|
|
|
FaceIterator fi;
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
2011-05-18 13:38:42 +02:00
|
|
|
(*fi).Q()=vcg::DoubleArea(*fi)/2;
|
2011-05-18 13:37:18 +02:00
|
|
|
}
|
2011-04-01 18:25:49 +02:00
|
|
|
|
2012-04-18 23:09:56 +02:00
|
|
|
static void FaceFromVertex( MeshType &m)
|
|
|
|
{
|
|
|
|
FaceIterator fi;
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
|
|
|
|
{
|
|
|
|
(*fi).Q() = ((*fi).V(0)->Q()+(*fi).V(1)->Q()+(*fi).V(2)->Q())/3.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-11-15 12:15:24 +01:00
|
|
|
static void VertexFromPlane(MeshType &m, const Plane3<ScalarType> &pl)
|
2011-06-02 23:28:50 +02:00
|
|
|
{
|
2012-12-10 10:41:53 +01:00
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
2012-01-18 12:44:42 +01:00
|
|
|
(*vi).Q() =SignedDistancePlanePoint(pl,(*vi).cP());
|
2011-06-02 23:28:50 +02:00
|
|
|
}
|
|
|
|
|
2012-12-10 10:41:53 +01:00
|
|
|
static void VertexFromGaussianCurvatureHG(MeshType &m)
|
2011-04-01 18:25:49 +02:00
|
|
|
{
|
2012-12-10 10:41:53 +01:00
|
|
|
tri::RequirePerVertexQuality(m);
|
|
|
|
tri::RequirePerVertexCurvature(m);
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
2011-04-01 18:25:49 +02:00
|
|
|
(*vi).Q() = (*vi).Kg();
|
|
|
|
}
|
|
|
|
|
2012-12-10 10:41:53 +01:00
|
|
|
static void VertexFromMeanCurvatureHG(MeshType &m)
|
2011-04-01 18:25:49 +02:00
|
|
|
{
|
2012-12-10 10:41:53 +01:00
|
|
|
tri::RequirePerVertexQuality(m);
|
|
|
|
tri::RequirePerVertexCurvature(m);
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
2011-04-01 18:25:49 +02:00
|
|
|
(*vi).Q() = (*vi).Kh();
|
|
|
|
}
|
|
|
|
|
2012-12-10 10:41:53 +01:00
|
|
|
static void VertexFromGaussianCurvatureDir(MeshType &m)
|
|
|
|
{
|
|
|
|
tri::RequirePerVertexQuality(m);
|
|
|
|
tri::RequirePerVertexCurvatureDir(m);
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
|
|
|
(*vi).Q() = (*vi).K1()*(*vi).K2();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void VertexFromMeanCurvatureDir(MeshType &m)
|
|
|
|
{
|
|
|
|
tri::RequirePerVertexQuality(m);
|
|
|
|
tri::RequirePerVertexCurvatureDir(m);
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
|
|
|
(*vi).Q() = ((*vi).K1()+(*vi).K2())/2.0f;
|
|
|
|
}
|
|
|
|
|
2011-04-01 18:25:49 +02:00
|
|
|
/*
|
|
|
|
* Absolute Curvature
|
|
|
|
*
|
|
|
|
* 2|H| if K >= 0
|
|
|
|
* |k1| + |k2| = <
|
|
|
|
* 2 * sqrt(|H|^2-K) otherwise
|
|
|
|
*
|
|
|
|
* defs and formulas taken from
|
|
|
|
*
|
|
|
|
* Improved curvature estimation for watershed segmentation of 3-dimensional meshes
|
|
|
|
* S Pulla, A Razdan, G Farin - Arizona State University, Tech. Rep, 2001
|
|
|
|
* and from
|
|
|
|
* Optimizing 3D triangulations using discrete curvature analysis
|
|
|
|
* N Dyn, K Hormann, SJ Kim, D Levin - Mathematical Methods for Curves and Surfaces: Oslo, 2000
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void VertexFromAbsoluteCurvature(MeshType &m)
|
|
|
|
{
|
|
|
|
VertexIterator vi;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
|
|
|
{
|
|
|
|
if((*vi).Kg() >= 0)
|
|
|
|
(*vi).Q() = math::Abs( 2*(*vi).Kh() );
|
|
|
|
else
|
|
|
|
(*vi).Q() = 2*math::Sqrt(math::Abs( (*vi).Kh()*(*vi).Kh() - (*vi).Kg()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* RMS Curvature = sqrt(4H^2-2K)
|
|
|
|
* def and formula taken from
|
|
|
|
*
|
|
|
|
* Improved curvature estimation for watershed segmentation of 3-dimensional meshes
|
|
|
|
* S Pulla, A Razdan, G Farin - Arizona State University, Tech. Rep, 2001
|
|
|
|
*/
|
|
|
|
static void VertexFromRMSCurvature(MeshType &m)
|
|
|
|
{
|
|
|
|
VertexIterator vi;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
|
|
|
(*vi).Q() = math::Sqrt(math::Abs( 4*(*vi).Kh()*(*vi).Kh() - 2*(*vi).Kg()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
Saturate the vertex quality so that for each vertex the gradient of the quality is lower than the given threshold value (in absolute value)
|
|
|
|
The saturation is done in a conservative way (quality is always decreased and never increased)
|
|
|
|
|
|
|
|
Note: requires VF adjacency.
|
|
|
|
*/
|
|
|
|
static void VertexSaturate(MeshType &m, ScalarType gradientThr=1.0)
|
|
|
|
{
|
|
|
|
UpdateFlags<MeshType>::VertexClearV(m);
|
|
|
|
std::stack<VertexPointer> st;
|
|
|
|
|
|
|
|
st.push(&*m.vert.begin());
|
|
|
|
|
|
|
|
while(!st.empty())
|
|
|
|
{
|
|
|
|
VertexPointer vc = st.top(); // the center
|
|
|
|
//printf("Stack size %i\n",st.size());
|
|
|
|
//printf("Pop elem %i %f\n",st.top() - &*m.vert.begin(), st.top()->Q());
|
|
|
|
st.pop();
|
|
|
|
vc->SetV();
|
|
|
|
std::vector<VertexPointer> star;
|
|
|
|
typename std::vector<VertexPointer>::iterator vvi;
|
|
|
|
face::VVStarVF<FaceType>(vc,star);
|
|
|
|
for(vvi=star.begin();vvi!=star.end();++vvi )
|
|
|
|
{
|
|
|
|
float &qi = (*vvi)->Q();
|
|
|
|
float distGeom = Distance((*vvi)->cP(),vc->cP()) / gradientThr;
|
|
|
|
// Main test if the quality varies more than the geometric displacement we have to lower something.
|
|
|
|
if( distGeom < fabs(qi - vc->Q()))
|
|
|
|
{
|
|
|
|
// center = 0 other=10 -> other =
|
|
|
|
// center = 10 other=0
|
|
|
|
if(vc->Q() > qi) // first case: the center of the star has to be lowered (and re-inserted in the queue).
|
|
|
|
{
|
|
|
|
//printf("Reinserting center %i \n",vc - &*m.vert.begin());
|
|
|
|
vc->Q() = qi+distGeom-0.00001f;
|
|
|
|
assert( distGeom > fabs(qi - vc->Q()));
|
|
|
|
st.push(vc);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// second case: you have to lower qi, the vertex under examination.
|
|
|
|
assert( distGeom < fabs(qi - vc->Q()));
|
|
|
|
assert(vc->Q() < qi);
|
|
|
|
float newQi = vc->Q() + distGeom -0.00001f;
|
|
|
|
assert(newQi <= qi);
|
|
|
|
assert(vc->Q() < newQi);
|
|
|
|
assert( distGeom > fabs(newQi - vc->Q()) );
|
|
|
|
// printf("distGeom %f, qi %f, vc->Q() %f, fabs(qi - vc->Q()) %f\n",distGeom,qi,vc->Q(),fabs(qi - vc->Q()));
|
|
|
|
qi = newQi;
|
|
|
|
(*vvi)->ClearV();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if(!(*vvi)->IsV())
|
|
|
|
{
|
|
|
|
st.push( *vvi);
|
|
|
|
// printf("Reinserting side %i \n",*vvi - &*m.vert.begin());
|
|
|
|
(*vvi)->SetV();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
}; //end class
|
|
|
|
} // end namespace
|
|
|
|
} // end namespace
|
|
|
|
#endif
|