2011-04-01 18:25:49 +02:00
|
|
|
/****************************************************************************
|
|
|
|
* VCGLib o o *
|
|
|
|
* Visual and Computer Graphics Library o o *
|
|
|
|
* _ O _ *
|
|
|
|
* Copyright(C) 2004 \/)\/ *
|
|
|
|
* Visual Computing Lab /\/| *
|
|
|
|
* ISTI - Italian National Research Council | *
|
|
|
|
* \ *
|
|
|
|
* All rights reserved. *
|
|
|
|
* *
|
|
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
|
|
* it under the terms of the GNU General Public License as published by *
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
|
|
* (at your option) any later version. *
|
|
|
|
* *
|
|
|
|
* This program is distributed in the hope that it will be useful, *
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
|
|
* for more details. *
|
|
|
|
* *
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
#ifndef __VCG_TRI_UPDATE_NORMALS
|
|
|
|
#define __VCG_TRI_UPDATE_NORMALS
|
|
|
|
|
|
|
|
#include <vcg/space/triangle3.h>
|
|
|
|
#include <vcg/math/matrix33.h>
|
2011-06-07 16:37:27 +02:00
|
|
|
#include <vcg/simplex/face/component.h>
|
|
|
|
#include <vcg/complex/algorithms/update/normal.h>
|
2011-04-01 19:06:03 +02:00
|
|
|
#include <vcg/complex/algorithms/update/flag.h>
|
2011-04-01 18:25:49 +02:00
|
|
|
|
|
|
|
namespace vcg {
|
|
|
|
namespace tri {
|
|
|
|
|
|
|
|
/// \ingroup trimesh
|
|
|
|
|
2011-04-01 19:06:03 +02:00
|
|
|
/// \headerfile normal.h vcg/complex/algorithms/update/normal.h
|
2011-04-01 18:25:49 +02:00
|
|
|
|
|
|
|
/// \brief Management, updating and computation of per-vertex and per-face normals.
|
|
|
|
/**
|
|
|
|
This class is used to compute or update the normals that can be stored in the vertex or face component of a mesh.
|
|
|
|
*/
|
|
|
|
|
|
|
|
template <class ComputeMeshType>
|
|
|
|
class UpdateNormals
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
typedef ComputeMeshType MeshType;
|
|
|
|
typedef typename MeshType::VertexType VertexType;
|
|
|
|
typedef typename MeshType::CoordType CoordType;
|
|
|
|
typedef typename VertexType::NormalType NormalType;
|
|
|
|
typedef typename VertexType::ScalarType ScalarType;
|
|
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
|
|
typedef typename MeshType::FaceType FaceType;
|
|
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
|
|
|
|
/**
|
|
|
|
Set to zero all the normals. Usued by all the face averaging algorithms.
|
|
|
|
by default it does not clear the normals of unreferenced vertices because they could be still useful
|
|
|
|
*/
|
|
|
|
static void PerVertexClear(ComputeMeshType &m, bool ClearAllVertNormal=false)
|
|
|
|
{
|
|
|
|
assert(HasPerVertexNormal(m));
|
|
|
|
if(ClearAllVertNormal)
|
|
|
|
UpdateFlags<ComputeMeshType>::VertexClearV(m);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
UpdateFlags<ComputeMeshType>::VertexSetV(m);
|
|
|
|
for(FaceIterator f=m.face.begin();f!=m.face.end();++f)
|
|
|
|
if( !(*f).IsD() )
|
|
|
|
for(int i=0;i<3;++i) (*f).V(i)->ClearV();
|
|
|
|
}
|
|
|
|
VertexIterator vi;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
|
|
if( !(*vi).IsD() && (*vi).IsRW() && (!(*vi).IsV()) )
|
|
|
|
(*vi).N() = NormalType((ScalarType)0,(ScalarType)0,(ScalarType)0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Calculates the face normal (if stored in the current face type)
|
|
|
|
|
|
|
|
static void PerFace(ComputeMeshType &m)
|
|
|
|
{
|
2012-01-20 08:49:26 +01:00
|
|
|
if( !HasPerFaceNormal(m)) return;
|
2011-04-01 18:25:49 +02:00
|
|
|
FaceIterator f;
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
2011-06-07 16:37:27 +02:00
|
|
|
if( !(*f).IsD() ) face::ComputeNormal(*f);
|
2011-04-01 18:25:49 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Calculates the vertex normal. Exploiting or current face normals.
|
|
|
|
/**
|
|
|
|
The normal of a vertex v is the weigthed average of the normals of the faces incident on v.
|
|
|
|
*/
|
|
|
|
static void PerVertexFromCurrentFaceNormal(ComputeMeshType &m)
|
|
|
|
{
|
2012-01-20 08:49:26 +01:00
|
|
|
if( !HasPerVertexNormal(m)) return;
|
2011-04-01 18:25:49 +02:00
|
|
|
|
|
|
|
VertexIterator vi;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
|
|
if( !(*vi).IsD() && (*vi).IsRW() )
|
|
|
|
(*vi).N()=CoordType(0,0,0);
|
|
|
|
|
|
|
|
FaceIterator fi;
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
|
|
if( !(*fi).IsD())
|
|
|
|
{
|
|
|
|
for(int j=0; j<3; ++j)
|
|
|
|
if( !(*fi).V(j)->IsD())
|
|
|
|
(*fi).V(j)->N() += (*fi).cN();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/// \brief Calculates the vertex normal. Exploiting or current face normals.
|
|
|
|
/**
|
|
|
|
The normal of a face f is the average of the normals of the vertices of f.
|
|
|
|
*/
|
|
|
|
static void PerFaceFromCurrentVertexNormal(ComputeMeshType &m)
|
|
|
|
{
|
|
|
|
for (FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
|
|
|
|
if( !(*fi).IsD())
|
|
|
|
{
|
|
|
|
NormalType n;
|
|
|
|
n.SetZero();
|
|
|
|
for(int j=0; j<3; ++j)
|
|
|
|
n += fi->V(j)->cN();
|
|
|
|
n.Normalize();
|
|
|
|
fi->N() = n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief Calculates the vertex normal. Without exploiting or touching face normals.
|
|
|
|
/**
|
|
|
|
The normal of a vertex v computed as a weighted sum f the incident face normals.
|
|
|
|
The weight is simlply the angle of the involved wedge. Described in:
|
|
|
|
|
|
|
|
G. Thurmer, C. A. Wuthrich
|
|
|
|
"Computing vertex normals from polygonal facets"
|
|
|
|
Journal of Graphics Tools, 1998
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void PerVertexAngleWeighted(ComputeMeshType &m)
|
|
|
|
{
|
|
|
|
assert(HasPerVertexNormal(m));
|
|
|
|
PerVertexClear(m);
|
|
|
|
FaceIterator f;
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
|
|
if( !(*f).IsD() && (*f).IsR() )
|
|
|
|
{
|
|
|
|
typename FaceType::NormalType t = vcg::NormalizedNormal(*f);
|
|
|
|
NormalType e0 = ((*f).V1(0)->cP()-(*f).V0(0)->cP()).Normalize();
|
|
|
|
NormalType e1 = ((*f).V1(1)->cP()-(*f).V0(1)->cP()).Normalize();
|
|
|
|
NormalType e2 = ((*f).V1(2)->cP()-(*f).V0(2)->cP()).Normalize();
|
|
|
|
|
|
|
|
(*f).V(0)->N() += t*AngleN(e0,-e2);
|
|
|
|
(*f).V(1)->N() += t*AngleN(-e0,e1);
|
|
|
|
(*f).V(2)->N() += t*AngleN(-e1,e2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Calculates the vertex normal. Without exploiting or touching face normals.
|
|
|
|
/**
|
|
|
|
The normal of a vertex v is computed according to the formula described by Nelson Max in
|
|
|
|
Max, N., "Weights for Computing Vertex Normals from Facet Normals", Journal of Graphics Tools, 4(2) (1999)
|
|
|
|
|
|
|
|
The weight for each wedge is the cross product of the two edge over the product of the square of the two edge lengths.
|
|
|
|
According to the original paper it is perfect only for spherical surface, but it should perform well...
|
|
|
|
*/
|
2012-07-31 11:15:20 +02:00
|
|
|
static void PerVertexNelsonMaxWeighted(ComputeMeshType &m)
|
2011-04-01 18:25:49 +02:00
|
|
|
{
|
|
|
|
assert(HasPerVertexNormal(m));
|
|
|
|
|
|
|
|
PerVertexClear(m);
|
|
|
|
|
|
|
|
FaceIterator f;
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
|
|
if( !(*f).IsD() && (*f).IsR() )
|
|
|
|
{
|
|
|
|
typename FaceType::NormalType t = vcg::Normal(*f);
|
|
|
|
ScalarType e0 = SquaredDistance((*f).V0(0)->cP(),(*f).V1(0)->cP());
|
|
|
|
ScalarType e1 = SquaredDistance((*f).V0(1)->cP(),(*f).V1(1)->cP());
|
|
|
|
ScalarType e2 = SquaredDistance((*f).V0(2)->cP(),(*f).V1(2)->cP());
|
|
|
|
|
|
|
|
(*f).V(0)->N() += t/(e0*e2);
|
|
|
|
(*f).V(1)->N() += t/(e0*e1);
|
|
|
|
(*f).V(2)->N() += t/(e1*e2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Calculates the vertex normal. Without exploiting or touching face normals.
|
|
|
|
/**
|
|
|
|
The normal of a vertex v is the classical area weigthed average of the normals of the faces incident on v.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void PerVertex(ComputeMeshType &m)
|
|
|
|
{
|
|
|
|
assert(HasPerVertexNormal(m));
|
|
|
|
|
|
|
|
PerVertexClear(m);
|
|
|
|
|
|
|
|
FaceIterator f;
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
|
|
if( !(*f).IsD() && (*f).IsR() )
|
|
|
|
{
|
|
|
|
//typename FaceType::NormalType t = (*f).Normal();
|
|
|
|
typename FaceType::NormalType t = vcg::Normal(*f);
|
|
|
|
|
|
|
|
for(int j=0; j<3; ++j)
|
|
|
|
if( !(*f).V(j)->IsD() && (*f).V(j)->IsRW() )
|
|
|
|
(*f).V(j)->N() += t;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief Calculates both vertex and face normals.
|
|
|
|
/**
|
|
|
|
The normal of a vertex v is the weigthed average of the normals of the faces incident on v.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void PerVertexPerFace(ComputeMeshType &m)
|
|
|
|
{
|
2012-01-20 08:49:26 +01:00
|
|
|
if( !HasPerVertexNormal(m) || !HasPerFaceNormal(m)) return;
|
2011-04-01 18:25:49 +02:00
|
|
|
|
|
|
|
PerFace(m);
|
|
|
|
PerVertexClear(m);
|
|
|
|
|
|
|
|
FaceIterator f;
|
|
|
|
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
|
|
if( !(*f).IsD() && (*f).IsR() )
|
|
|
|
{
|
|
|
|
for(int j=0; j<3; ++j)
|
|
|
|
if( !(*f).V(j)->IsD() && (*f).V(j)->IsRW() )
|
|
|
|
(*f).V(j)->N() += (*f).cN();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Calculates both vertex and face normals.
|
|
|
|
/**
|
|
|
|
The normal of a vertex v is the weigthed average of the normals of the faces incident on v.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void PerVertexNormalizedPerFace(ComputeMeshType &m)
|
|
|
|
{
|
|
|
|
PerVertexPerFace(m);
|
|
|
|
NormalizeVertex(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Normalize the lenght of the face normals.
|
|
|
|
static void NormalizeVertex(ComputeMeshType &m)
|
|
|
|
{
|
|
|
|
VertexIterator vi;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
|
|
if( !(*vi).IsD() && (*vi).IsRW() )
|
|
|
|
(*vi).N().Normalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Normalize the lenght of the face normals.
|
|
|
|
static void NormalizeFace(ComputeMeshType &m)
|
|
|
|
{
|
|
|
|
FaceIterator fi;
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
|
|
if( !(*fi).IsD() ) (*fi).N().Normalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void AreaNormalizeFace(ComputeMeshType &m)
|
|
|
|
{
|
|
|
|
FaceIterator fi;
|
|
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
|
|
if( !(*fi).IsD() )
|
|
|
|
{
|
|
|
|
(*fi).N().Normalize();
|
|
|
|
(*fi).N() = (*fi).N() * DoubleArea(*fi);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void PerVertexNormalizedPerFaceNormalized(ComputeMeshType &m)
|
|
|
|
{
|
|
|
|
PerVertexNormalizedPerFace(m);
|
|
|
|
NormalizeFace(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void PerFaceRW(ComputeMeshType &m, bool normalize=false)
|
|
|
|
{
|
2012-01-20 08:49:26 +01:00
|
|
|
if( !HasPerFaceNormal(m)) return;
|
2011-04-01 18:25:49 +02:00
|
|
|
|
|
|
|
FaceIterator f;
|
|
|
|
bool cn = true;
|
|
|
|
|
|
|
|
if(normalize)
|
|
|
|
{
|
|
|
|
for(f=m.m.face.begin();f!=m.m.face.end();++f)
|
|
|
|
if( !(*f).IsD() && (*f).IsRW() )
|
|
|
|
{
|
|
|
|
for(int j=0; j<3; ++j)
|
|
|
|
if( !(*f).V(j)->IsR()) cn = false;
|
|
|
|
if( cn ) face::ComputeNormalizedNormal(*f);
|
|
|
|
cn = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for(f=m.m.face.begin();f!=m.m.face.end();++f)
|
|
|
|
if( !(*f).IsD() && (*f).IsRW() )
|
|
|
|
{
|
|
|
|
for(int j=0; j<3; ++j)
|
|
|
|
if( !(*f).V(j)->IsR()) cn = false;
|
|
|
|
|
|
|
|
if( cn )
|
|
|
|
(*f).ComputeNormal();
|
|
|
|
cn = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void PerFaceNormalized(ComputeMeshType &m)
|
|
|
|
{
|
2012-01-20 08:49:26 +01:00
|
|
|
if( !HasPerFaceNormal(m)) return;
|
2011-04-01 18:25:49 +02:00
|
|
|
FaceIterator f;
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f)
|
|
|
|
if( !(*f).IsD() ) face::ComputeNormalizedNormal(*f);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void PerBitQuadFaceNormalized(ComputeMeshType &m)
|
|
|
|
{
|
2012-01-20 08:49:26 +01:00
|
|
|
if( !HasPerFaceNormal(m)) return;
|
2011-04-01 18:25:49 +02:00
|
|
|
PerFace(m);
|
|
|
|
|
|
|
|
FaceIterator f;
|
|
|
|
for(f=m.face.begin();f!=m.face.end();++f) {
|
|
|
|
if( !(*f).IsD() ) {
|
|
|
|
for (int k=0; k<3; k++) if (f->IsF(k))
|
|
|
|
if (&*f < f->FFp(k)) {
|
|
|
|
f->N() = f->FFp(k)->N() = (f->FFp(k)->N() + f->N()).Normalize();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief Calculates the vertex normal.
|
|
|
|
static void PerVertexNormalized(ComputeMeshType &m)
|
|
|
|
{
|
2012-01-20 08:49:26 +01:00
|
|
|
if( !HasPerVertexNormal(m)) return;
|
2011-04-01 18:25:49 +02:00
|
|
|
PerVertex(m);
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
|
|
if( !(*vi).IsD() && (*vi).IsRW() )
|
|
|
|
(*vi).N().Normalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Multiply the vertex normals by the matrix passed. By default, the scale component is removed.
|
|
|
|
static void PerVertexMatrix(ComputeMeshType &m, const Matrix44<ScalarType> &mat, bool remove_scaling= true){
|
|
|
|
float scale;
|
|
|
|
|
|
|
|
Matrix33<ScalarType> mat33(mat,3);
|
|
|
|
|
2012-01-20 08:49:26 +01:00
|
|
|
if( !HasPerVertexNormal(m)) return;
|
2011-04-01 18:25:49 +02:00
|
|
|
|
|
|
|
if(remove_scaling){
|
|
|
|
scale = pow(mat33.Determinant(),(ScalarType)(1.0/3.0));
|
|
|
|
mat33[0][0]/=scale;
|
|
|
|
mat33[1][1]/=scale;
|
|
|
|
mat33[2][2]/=scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
|
|
if( !(*vi).IsD() && (*vi).IsRW() )
|
|
|
|
(*vi).N() = mat33*(*vi).N();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Multiply the face normals by the matrix passed. By default, the scale component is removed.
|
|
|
|
static void PerFaceMatrix(ComputeMeshType &m, const Matrix44<ScalarType> &mat, bool remove_scaling= true){
|
|
|
|
float scale;
|
|
|
|
|
|
|
|
Matrix33<ScalarType> mat33(mat,3);
|
|
|
|
|
2012-01-20 08:49:26 +01:00
|
|
|
if( !HasPerFaceNormal(m)) return;
|
2011-04-01 18:25:49 +02:00
|
|
|
|
|
|
|
if(remove_scaling){
|
|
|
|
scale = pow(mat33.Determinant(),ScalarType(1.0/3.0));
|
|
|
|
mat33[0][0]/=scale;
|
|
|
|
mat33[1][1]/=scale;
|
|
|
|
mat33[2][2]/=scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
|
|
if( !(*fi).IsD() && (*fi).IsRW() )
|
|
|
|
(*fi).N() = mat33* (*fi).N();
|
|
|
|
}
|
|
|
|
|
|
|
|
}; // end class
|
|
|
|
|
|
|
|
} // End namespace
|
|
|
|
} // End namespace
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|