Ongoing Rearrangement of filpath
This commit is contained in:
parent
c018a60762
commit
2506364fc4
|
@ -1,453 +0,0 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2004 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
/****************************************************************************
|
||||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.6 2007/02/02 04:11:00 tarini
|
||||
added parameter theta (from conformal to equiareal) to AreaPresTextureOptimizer.
|
||||
Improved feature lists (comments).
|
||||
|
||||
Revision 1.5 2007/02/02 01:39:58 tarini
|
||||
added three general-utility global functions for texture coordinates: SmoothTextureCoords, IsFoldFree, MarkFolds (see descriptions)
|
||||
|
||||
Revision 1.4 2007/02/02 01:23:47 tarini
|
||||
added a few general comments on AreaPreserving optimizer, recapping optimizer features.
|
||||
|
||||
Revision 1.3 2007/02/02 01:18:15 tarini
|
||||
First version: general virtual class for texture optimizers. A subclass for area preservation.
|
||||
|
||||
|
||||
****************************************************************************/
|
||||
|
||||
#ifndef __VCGLIB__TEXTCOOORD_OPTIMIZATION
|
||||
#define __VCGLIB__TEXTCOOORD_OPTIMIZATION
|
||||
|
||||
#include <vcg/container/simple_temporary_data.h>
|
||||
|
||||
|
||||
/*
|
||||
|
||||
SINGLE PATCH TEXTURE OPTIMIZATIONS
|
||||
|
||||
A set of classes to perform optimizations of disk->disk parametrization.
|
||||
|
||||
Requires texture coords to be defined per vertex (replicate seams).
|
||||
|
||||
*/
|
||||
|
||||
|
||||
namespace vcg
|
||||
{
|
||||
namespace tri
|
||||
{
|
||||
|
||||
|
||||
/* Base class for all Texture Optimizers*/
|
||||
template<class MESH_TYPE>
|
||||
class TextureOptimizer{
|
||||
protected:
|
||||
MESH_TYPE &m;
|
||||
SimpleTempData<typename MESH_TYPE::VertContainer, int > isFixed;
|
||||
public:
|
||||
|
||||
/* Tpyes */
|
||||
typedef MESH_TYPE MeshType;
|
||||
typedef typename MESH_TYPE::VertexIterator VertexIterator;
|
||||
typedef typename MESH_TYPE::FaceIterator FaceIterator;
|
||||
typedef typename MESH_TYPE::VertexType VertexType;
|
||||
typedef typename MESH_TYPE::FaceType FaceType;
|
||||
typedef typename MESH_TYPE::ScalarType ScalarType;
|
||||
|
||||
|
||||
/* Access functions */
|
||||
const MeshType & Mesh() const {return m;}
|
||||
MeshType & Mesh() {return m;}
|
||||
|
||||
/* Constructior */
|
||||
TextureOptimizer(MeshType &_m):m(_m),isFixed(_m.vert){
|
||||
assert(m.HasPerVertexTexture());
|
||||
}
|
||||
|
||||
// initializes on current geometry
|
||||
virtual void TargetCurrentGeometry()=0;
|
||||
|
||||
// performs an interation. Returns largest movement.
|
||||
virtual ScalarType Iterate()=0;
|
||||
|
||||
// performs an iteration (faster, but it does not tell how close it is to stopping)
|
||||
virtual void IterateBlind()=0;
|
||||
|
||||
// performs <steps> iteration
|
||||
virtual ScalarType IterateN(int step){
|
||||
for (int i=0; i<step-1; i++) {
|
||||
this->IterateBlind();
|
||||
}
|
||||
if (step>1) return this->Iterate(); else return 0;
|
||||
}
|
||||
|
||||
// performs iterations until convergence.
|
||||
bool IterateUntilConvergence(ScalarType threshold=0.0001, int maxite=5000){
|
||||
int i;
|
||||
while (Iterate()>threshold) {
|
||||
if (i++>maxite) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// desctuctor: free temporary field
|
||||
~TextureOptimizer(){
|
||||
isFixed.Stop();
|
||||
};
|
||||
|
||||
// set the current border as fixed (forced to stay in position during text optimization)
|
||||
void SetBorderAsFixed(){
|
||||
isFixed.Start();
|
||||
for (VertexIterator v=m.vert.begin(); v!=m.vert.end(); v++) {
|
||||
isFixed[v]=(v->IsB())?1:0;
|
||||
}
|
||||
}
|
||||
|
||||
// everything moves, no vertex must fixed during texture optimization)
|
||||
void SetNothingAsFixed(){
|
||||
isFixed.Start();
|
||||
for (VertexIterator v=m.vert.begin(); v!=m.vert.end(); v++) {
|
||||
isFixed[v]=0;
|
||||
}
|
||||
}
|
||||
|
||||
// fix a given vertex
|
||||
void FixVertex(const VertexType *v, bool fix=true){
|
||||
isFixed[v]=(fix)?1:0;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
/*
|
||||
AREA PRESERVING TEXTURE OPTIMIZATION
|
||||
|
||||
as in: Degener, P., Meseth, J., Klein, R.
|
||||
"An adaptable surface parameterization method."
|
||||
Proc. of the 12th International Meshing oundtable, 201–213 [2003].
|
||||
|
||||
Features:
|
||||
|
||||
:) - Balances angle and area distortions (best results!).
|
||||
:) - Can choose how to balance area and angle preservation (see SetTheta)
|
||||
theta=0 -> pure conformal (use MIPS instead!)
|
||||
theta=3 -> good balance between area and angle preservation
|
||||
theta>3 -> care more about area than about angles
|
||||
:( - Slowest method.
|
||||
:( - Requires a fixed boundary, else expands forever in texture space (unless theta=0).
|
||||
:( - Diverges in presence of flipped faces (unless theta=0).
|
||||
:( - Requires a speed parameter to be set.
|
||||
Speed too large => when close, bounces back and forth around minimum, w/o getting any closer.
|
||||
Lower speed => longer convercence times
|
||||
*/
|
||||
|
||||
template<class MESH_TYPE>
|
||||
class AreaPreservingTextureOptimizer:public TextureOptimizer<MESH_TYPE>{
|
||||
public:
|
||||
/* Types */
|
||||
typedef MESH_TYPE MeshType;
|
||||
typedef typename MESH_TYPE::VertexIterator VertexIterator;
|
||||
typedef typename MESH_TYPE::FaceIterator FaceIterator;
|
||||
typedef typename MESH_TYPE::VertexType VertexType;
|
||||
typedef typename MESH_TYPE::FaceType FaceType;
|
||||
typedef typename MESH_TYPE::ScalarType ScalarType;
|
||||
|
||||
|
||||
private:
|
||||
typedef TextureOptimizer<MESH_TYPE> Super; // superclass (commodity)
|
||||
|
||||
// extra data per face: [0..3] -> cotangents. [4] -> area*2
|
||||
SimpleTempData<typename MESH_TYPE::FaceContainer, Point4<ScalarType> > data;
|
||||
SimpleTempData<typename MESH_TYPE::VertContainer, Point2<ScalarType> > sum;
|
||||
|
||||
ScalarType totArea;
|
||||
ScalarType speed;
|
||||
|
||||
int theta;
|
||||
|
||||
public:
|
||||
|
||||
// constructor and destructor
|
||||
AreaPreservingTextureOptimizer(MeshType &_m):Super(_m),data(_m.face),sum(_m.vert){
|
||||
speed=0.001;
|
||||
theta=3;
|
||||
}
|
||||
|
||||
~AreaPreservingTextureOptimizer(){
|
||||
data.Stop();
|
||||
sum.Stop();
|
||||
Super::isFixed.Stop();
|
||||
}
|
||||
|
||||
void SetSpeed(ScalarType _speed){
|
||||
speed=_speed;
|
||||
}
|
||||
|
||||
ScalarType GetSpeed(){
|
||||
return speed;
|
||||
}
|
||||
|
||||
// sets the parameter theta:
|
||||
// good parameters are in 1..3
|
||||
// 0 = converge to pure conformal, ignore area preservation
|
||||
// 3 = good balance between area and conformal
|
||||
// >3 = area more important, angle preservation less important
|
||||
void SetTheta(int _theta){
|
||||
theta=_theta;
|
||||
}
|
||||
|
||||
int GetTheta(){
|
||||
return theta;
|
||||
}
|
||||
|
||||
void IterateBlind(){
|
||||
/* todo: do as iterate, but without */
|
||||
Iterate();
|
||||
}
|
||||
|
||||
ScalarType Iterate(){
|
||||
|
||||
ScalarType max; // max displacement
|
||||
|
||||
#define v0 (f->V0(i)->T().P())
|
||||
#define v1 (f->V1(i)->T().P())
|
||||
#define v2 (f->V2(i)->T().P())
|
||||
for (VertexIterator v=Super::m.vert.begin(); v!=Super::m.vert.end(); v++) {
|
||||
sum[v].SetZero();
|
||||
}
|
||||
|
||||
ScalarType tot_proj_area=0;
|
||||
for (FaceIterator f=Super::m.face.begin(); f!=Super::m.face.end(); f++) {
|
||||
int i=0;
|
||||
double area2 = ((v1-v0) ^ (v2-v0));
|
||||
tot_proj_area+=area2;
|
||||
}
|
||||
|
||||
double scale= 1.0; //tot_proj_area / tot_area ;
|
||||
|
||||
for (FaceIterator f=Super::m.face.begin(); f!=Super::m.face.end(); f++) {
|
||||
int i=0; ScalarType area2 = ((v1-v0) ^ (v2-v0));
|
||||
for (i=0; i<3; i++){
|
||||
ScalarType
|
||||
a = (v1-v0).Norm(),
|
||||
b = ((v1-v0) * (v2-v0))/a,
|
||||
c = area2 / a,
|
||||
|
||||
m0= data[f][i] / area2,
|
||||
m1= data[f][(i+1)%3] / area2,
|
||||
m2= data[f][(i+2)%3] / area2,
|
||||
|
||||
mx= (b-a)/area2,
|
||||
my= c/area2, // 1.0/a
|
||||
mA= data[f][3]/area2 * scale,
|
||||
e = m0*((b-a)*(b-a)+c*c) + m1*(b*b+c*c) + m2*a*a, // as obvious
|
||||
M1= mA + 1.0/mA,
|
||||
M2= mA - 1.0/mA,
|
||||
px= e*my,
|
||||
py=-e*mx,
|
||||
qx= m1*b+ m2*a,
|
||||
qy= m1*c,
|
||||
|
||||
/* linear weightings
|
||||
|
||||
dx= (OMEGA) * (my * M2) +
|
||||
(1-OMEGA) * ( px - 2.0*qx),
|
||||
dy= (OMEGA) * (-mx * M2) +
|
||||
(1-OMEGA) * ( py - 2.0*qy),*/
|
||||
|
||||
// exponential weighting
|
||||
// 2d gradient
|
||||
|
||||
dx=// M1
|
||||
//*M1 // ^ theta-1
|
||||
pow(M1,theta-1)
|
||||
*(px*(M1+ theta*M2) - 2.0*qx*M1),
|
||||
dy=// M1
|
||||
//*M1 // ^ theta-1
|
||||
pow(M1,theta-1)
|
||||
*(py*(M1+ theta*M2) - 2.0*qy*M1),
|
||||
|
||||
gy= dy/c,
|
||||
gx= (dx - gy*b) / a;
|
||||
|
||||
// 3d gradient
|
||||
|
||||
sum[f->V(i)]+= ( (v1-v0) * gx + (v2-v0) * gy ) * data[f][3];
|
||||
}
|
||||
}
|
||||
max=0; // max displacement
|
||||
speed=0.001;
|
||||
for (VertexIterator v=Super::m.vert.begin(); v!=Super::m.vert.end(); v++)
|
||||
if ( !Super::isFixed[v] ) //if (!v->IsB())
|
||||
{
|
||||
ScalarType n=sum[v].Norm();
|
||||
if ( n > 1 ) { sum[v]/=n; n=1.0;}
|
||||
if ( n*speed<=0.1 ); {
|
||||
v->T().P()-=(sum[v] * speed ) /** scale*/;
|
||||
if (max<n) max=n;
|
||||
}
|
||||
//else rejected++;
|
||||
}
|
||||
return max;
|
||||
#undef v0
|
||||
#undef v1
|
||||
#undef v2
|
||||
//printf("rejected %d\n",rejected);
|
||||
}
|
||||
|
||||
void TargetCurrentGeometry(){
|
||||
|
||||
Super::isFixed.Start();
|
||||
data.Start();
|
||||
sum.Start();
|
||||
|
||||
totArea=0;
|
||||
for (FaceIterator f=Super::m.face.begin(); f!=Super::m.face.end(); f++) {
|
||||
double area2 = ((f->V(1)->P() - f->V(0)->P() )^(f->V(2)->P() - f->V(0)->P() )).Norm();
|
||||
totArea+=area2;
|
||||
//if ( Super::isFixed[f->V1(0)] )
|
||||
for (int i=0; i<3; i++){
|
||||
data[f][i]=(
|
||||
(f->V1(i)->P() - f->V0(i)->P() )*(f->V2(i)->P() - f->V0(i)->P() )
|
||||
)/area2;
|
||||
data[f][3]=area2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
/* texture coords general utility functions */
|
||||
/*++++++++++++++++++++++++++++++++++++++++++*/
|
||||
|
||||
// returns false if any fold is present (faster than MarkFolds)
|
||||
template<class MESH_TYPE>
|
||||
bool IsFoldFree(MESH_TYPE &m){
|
||||
|
||||
assert(m.HasPerVertexTexture());
|
||||
|
||||
typedef typename MESH_TYPE::VertexType::TextureType::PointType PointType;
|
||||
typedef typename MESH_TYPE::VertexType::TextureType::PointType::ScalarType ScalarType;
|
||||
|
||||
ScalarType lastsign=0;
|
||||
for (typename MESH_TYPE::FaceIterator f=m.face.begin(); f!=m.face.end(); f++){
|
||||
ScalarType sign=((f->V(1)->T().P()-f->V(0)->T().P()) ^ (f->V(2)->T().P()-f->V(0)->T().P()));
|
||||
if (sign!=0) {
|
||||
if (sign*lastsign<0) return false;
|
||||
lastsign=sign;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// detects and marks folded faces, by setting their quality to 0 (or 1 otherwise)
|
||||
// returns number of folded faces
|
||||
template<class MESH_TYPE>
|
||||
int MarkFolds(MESH_TYPE &m){
|
||||
|
||||
assert(m.HasPerVertexTexture());
|
||||
assert(m.HasPerFaceQuality());
|
||||
|
||||
typedef typename MESH_TYPE::VertexType::TextureType::PointType PointType;
|
||||
typedef typename MESH_TYPE::VertexType::TextureType::PointType::ScalarType ScalarType;
|
||||
|
||||
SimpleTempData<typename MESH_TYPE::FaceContainer, short> sign(m.face);
|
||||
sign.Start(0);
|
||||
|
||||
// first pass, determine predominant sign
|
||||
int npos=0, nneg=0;
|
||||
ScalarType lastsign=0;
|
||||
for (typename MESH_TYPE::FaceIterator f=m.face.begin(); f!=m.face.end(); f++){
|
||||
ScalarType fsign=((f->V(1)->T().P()-f->V(0)->T().P()) ^ (f->V(2)->T().P()-f->V(0)->T().P()));
|
||||
if (fsign<0) { sign[f]=-1; nneg++; }
|
||||
if (fsign>0) { sign[f]=+1; npos++; }
|
||||
}
|
||||
|
||||
// second pass, detect folded faces
|
||||
int res=0;
|
||||
short gsign= (nneg>npos)?-1:+1;
|
||||
for (typename MESH_TYPE::FaceIterator f=m.face.begin(); f!=m.face.end(); f++){
|
||||
if (sign[f]*gsign<0){
|
||||
res++;
|
||||
f->Q()=0;
|
||||
} else f->Q()=1;
|
||||
}
|
||||
|
||||
sign.Stop();
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// Smooths texture coords.
|
||||
// (can be useful to remove folds,
|
||||
// e.g. these created when obtaining tecture coordinates after projections)
|
||||
template<class MESH_TYPE>
|
||||
void SmoothTextureCoords(MESH_TYPE &m){
|
||||
|
||||
assert(m.HasPerVertexTexture());
|
||||
|
||||
typedef typename MESH_TYPE::VertexType::TextureType::PointType PointType;
|
||||
|
||||
SimpleTempData<typename MESH_TYPE::VertContainer, int> div(m.vert);
|
||||
SimpleTempData<typename MESH_TYPE::VertContainer, PointType > sum(m.vert);
|
||||
|
||||
div.Start();
|
||||
sum.Start();
|
||||
|
||||
for (typename MESH_TYPE::VertexIterator v=m.vert.begin(); v!=m.vert.end(); v++) {
|
||||
sum[v].SetZero();
|
||||
div[v]=0;
|
||||
}
|
||||
|
||||
for (typename MESH_TYPE::FaceIterator f=m.face.begin(); f!=m.face.end(); f++){
|
||||
div[f->V(0)] +=2; sum[f->V(0)] += f->V(2)->T().P(); sum[f->V(0)] += f->V(1)->T().P();
|
||||
div[f->V(1)] +=2; sum[f->V(1)] += f->V(0)->T().P(); sum[f->V(1)] += f->V(2)->T().P();
|
||||
div[f->V(2)] +=2; sum[f->V(2)] += f->V(1)->T().P(); sum[f->V(2)] += f->V(0)->T().P();
|
||||
}
|
||||
|
||||
for (typename MESH_TYPE::VertexIterator v=m.vert.begin(); v!=m.vert.end(); v++) // if (!v->IsB())
|
||||
{
|
||||
if (v->div>0) {
|
||||
v->T().P() = sum[v]/div[v];
|
||||
}
|
||||
}
|
||||
|
||||
div.Stop();
|
||||
sum.Stop();
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
} } // End namespace vcg::tri
|
||||
|
||||
#endif // __VCGLIB__TEXTCOOORD_OPTIMIZATION
|
Loading…
Reference in New Issue