Replaced Eigen::Vector3f p; with Eigen::Matrix<S,3,1> p; (support for double precision).
This commit is contained in:
parent
2464b63495
commit
57880ef231
|
@ -8,7 +8,7 @@
|
|||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
|
@ -49,7 +49,7 @@ void ComputeCovarianceMatrix(const std::vector<Point3<S> > &pointVec, Point3<S>
|
|||
|
||||
// second cycle: compute the covariance matrix
|
||||
m.setZero();
|
||||
Eigen::Vector3f p;
|
||||
Eigen::Matrix<S,3,1> p;
|
||||
for(pit = pointVec.begin(); pit != pointVec.end(); ++pit) {
|
||||
((*pit)-barycenter).ToEigenVector(p);
|
||||
m+= p*p.transpose(); // outer product
|
||||
|
@ -64,13 +64,13 @@ The algorithm used is the classical Covariance matrix eigenvector approach.
|
|||
template <class S>
|
||||
void FitPlaneToPointSet(const std::vector< Point3<S> > & pointVec, Plane3<S> & plane)
|
||||
{
|
||||
Eigen::Matrix3f covMat=Eigen::Matrix3f::Zero();
|
||||
Eigen::Matrix<S,3,3> covMat = Eigen::Matrix<S,3,3>::Zero();
|
||||
Point3<S> b;
|
||||
ComputeCovarianceMatrix(pointVec,b,covMat);
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eig(covMat);
|
||||
Eigen::Vector3f eval = eig.eigenvalues();
|
||||
Eigen::Matrix3f evec = eig.eigenvectors();
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::Matrix<S,3,3> > eig(covMat);
|
||||
Eigen::Matrix<S,3,1> eval = eig.eigenvalues();
|
||||
Eigen::Matrix<S,3,3> evec = eig.eigenvectors();
|
||||
eval = eval.cwiseAbs();
|
||||
int minInd;
|
||||
eval.minCoeff(&minInd);
|
||||
|
@ -107,7 +107,7 @@ void ComputeWeightedCovarianceMatrix(const std::vector<Point3<S> > &pointVec, co
|
|||
// The weights are applied to the points transposed to the origin.
|
||||
m.setZero();
|
||||
Eigen::Matrix<S,3,3> A;
|
||||
Eigen::Vector3f p;
|
||||
Eigen::Matrix<S,3,1> p;
|
||||
for( pit = pointVec.begin(),wit=weightVec.begin(); pit != pointVec.end(); ++pit,++wit)
|
||||
{
|
||||
(((*pit)-bp)*(*wit)).ToEigenVector(p);
|
||||
|
@ -123,13 +123,13 @@ The algorithm used is the classical Covariance matrix eigenvector approach.
|
|||
template <class S>
|
||||
void WeightedFitPlaneToPointSet(const std::vector< Point3<S> > & pointVec, const std::vector<S> &weightVec, Plane3<S> & plane)
|
||||
{
|
||||
Eigen::Matrix3f covMat=Eigen::Matrix3f::Zero();
|
||||
Eigen::Matrix<S,3,3> covMat = Eigen::Matrix<S,3,3>::Zero();
|
||||
Point3<S> b;
|
||||
ComputeWeightedCovarianceMatrix(pointVec,weightVec, b,covMat);
|
||||
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eig(covMat);
|
||||
Eigen::Vector3f eval = eig.eigenvalues();
|
||||
Eigen::Matrix3f evec = eig.eigenvectors();
|
||||
Eigen::SelfAdjointEigenSolver<Eigen::Matrix<S,3,3> > eig(covMat);
|
||||
Eigen::Matrix<S,3,1> eval = eig.eigenvalues();
|
||||
Eigen::Matrix<S,3,3> evec = eig.eigenvectors();
|
||||
eval = eval.cwiseAbs();
|
||||
int minInd;
|
||||
eval.minCoeff(&minInd);
|
||||
|
|
Loading…
Reference in New Issue