exetended form BasicGrid, changed type of t in class Link (from Iterator to Pointer to the object)

This commit is contained in:
Nico Pietroni 2005-08-02 11:18:36 +00:00
parent 7bc4ef59fd
commit 66921c752b
1 changed files with 374 additions and 383 deletions

View File

@ -21,9 +21,12 @@
* *
****************************************************************************/
/****************************************************************************
History
History
$Log: not supported by cvs2svn $
Revision 1.13 2005/04/14 17:23:08 ponchio
*** empty log message ***
Revision 1.12 2005/03/15 11:43:18 cignoni
Removed BestDim function from the grid_static_ptr class and moved to a indipendent file (grid_util.h) for sake of generality.
@ -75,400 +78,388 @@ Initial commit
#include <vcg/space/box3.h>
#include <vcg/space/line3.h>
#include <vcg/space/index/grid_util.h>
namespace vcg {
/** Static Uniform Grid
A spatial search structure for a accessing a container of objects.
It is based on a uniform grid overlayed over a protion of space.
The grid partion the space into cells. Cells contains just pointers
to the object that are stored elsewhere.
The set of objects is meant to be static and pointer stable.
Useful for situation were many space related query are issued over
the same dataset (ray tracing, measuring distances between meshes,
re-detailing ecc.).
Works well for distribution that ar reasonably uniform.
How to use it:
ContainerType must have a 'value_type' typedef inside.
(stl containers already have it)
/** Static Uniform Grid
A spatial search structure for a accessing a container of objects.
It is based on a uniform grid overlayed over a protion of space.
The grid partion the space into cells. Cells contains just pointers
to the object that are stored elsewhere.
The set of objects is meant to be static and pointer stable.
Objects pointed by cells (of kind 'value_type') must have
a 'ScalarType' typedef (float or double usually)
and 2 member functions:
bool Dist(const Point3f &point, ScalarType &mindist, Point3f &result);
which return true if the distance from point to the object is < mindist
and set mindist to said distance, and result must be set as the closest
point of the object to point)
Useful for situation were many space related query are issued over
the same dataset (ray tracing, measuring distances between meshes,
re-detailing ecc.).
Works well for distribution that ar reasonably uniform.
How to use it:
ContainerType must have a 'value_type' typedef inside.
(stl containers already have it)
void GetBBox(Box3<ScalarType> &b)
which return the bounding box of the object
*/
template < typename ContainerType >
class GridStaticPtr
{
public:
Objects pointed by cells (of kind 'value_type') must have
a 'ScalarType' typedef (float or double usually)
and 2 member functions:
/** Internal class for keeping the first pointer of object.
Definizione Link dentro la griglia. Classe di supporto per GridStaticObj.
*/
class Link
{
public:
/// Costruttore di default
inline Link(){};
/// Costruttore con inizializzatori
inline Link( typename ContainerType::iterator const nt, const int ni ){
assert(ni>=0);
t = nt;
i = ni;
};
inline bool operator < ( const Link & l ) const{ return i < l.i; }
inline bool operator <= ( const Link & l ) const{ return i <= l.i; }
inline bool operator > ( const Link & l ) const{ return i > l.i; }
inline bool operator >= ( const Link & l ) const{ return i >= l.i; }
inline bool operator == ( const Link & l ) const{ return i == l.i; }
inline bool operator != ( const Link & l ) const{ return i != l.i; }
inline typename ContainerType::iterator & Elem() {
return t;
}
inline int & Index() {
return i;
}
private:
/// Puntatore all'elemento T
typename ContainerType::iterator t;
/// Indirizzo del voxel dentro la griglia
int i;
};//end class Link
typedef typename ContainerType::value_type ObjType;
typedef ObjType* ObjPtr;
typedef typename ObjType::ScalarType ScalarType;
typedef Point3<ScalarType> Point3x;
typedef Box3<ScalarType> Box3x;
typedef Line3<ScalarType> Line3x;
typedef Link* Cell;
Box3x bbox;
Point3x dim; /// Dimensione spaziale (lunghezza lati) del bbox
Point3i siz; /// Dimensioni griglia in celle
Point3x voxel; /// Dimensioni di una cella
bool Dist(const Point3f &point, ScalarType &mindist, Point3f &result);
which return true if the distance from point to the object is < mindist
and set mindist to said distance, and result must be set as the closest
point of the object to point)
std::vector<Link> links; /// Insieme di tutti i links
std::vector<Cell> grid; /// Griglia vera e propria
/// Dato un punto, ritorna la cella che lo contiene
inline Cell* Grid( const Point3d & p )
{
int x = int( (p[0]-bbox.min[0])/voxel[0] );
int y = int( (p[1]-bbox.min[1])/voxel[1] );
int z = int( (p[2]-bbox.min[2])/voxel[2] );
#ifndef NDEBUG
if ( x<0 || x>=siz[0] || y<0 || y>=siz[1] || z<0 || z>=siz[2] )
return NULL;
else
#endif
return grid.begin() + ( x+siz[0]*(y+siz[1]*z) );
}
/// Date le coordinate ritorna la cella
inline Cell* Grid( const int x, const int y, const int z )
{
#ifndef NDEBUG
if ( x<0 || x>=siz[0] || y<0 || y>=siz[1] || z<0 || z>=siz[2] )
assert(0);
//return NULL;
else
#endif
assert(((unsigned int)x+siz[0]*y+siz[1]*z)<grid.size());
return &*grid.begin() + ( x+siz[0]*(y+siz[1]*z) );
}
/// Date le coordinate di un grid point (corner minx,miy,minz) ritorna le celle che condividono
/// l'edge cell che parte dal grid point in direzione axis
inline void Grid( Point3i p, const int axis,
std::vector<Cell*> & cl)
{
#ifndef NDEBUG
if ( p[0]<0 || p[0]>siz[0] ||
p[1]<0 || p[1]>siz[1] ||
p[2]<0 || p[2]>siz[2] )
assert(0);
//return NULL;
else
#endif
assert(((unsigned int) p[0]+siz[0]*p[1]+siz[1]*p[2])<grid.size());
int axis0 = (axis+1)%3;
int axis1 = (axis+2)%3;
int i,j,x,y;
x = p[axis0];
y = p[axis1];
for(i = max(x-1,0); i <= min( x,siz[axis0]-1);++i)
for(j = max(y-1,0); j <= min( y,siz[axis1]-1);++j){
p[axis0]=i;
p[axis1]=j;
cl.push_back(Grid(p[0]+siz[0]*(p[1]+siz[1]*p[2])));
}
}
Cell* Grid(const int i) {
return &grid[i];
}
void Grid( const Point3d & p, Cell & first, Cell & last )
{
Cell* g = Grid(p);
first = *g;
last = *(g+1);
}
void Grid( const Cell* g, Cell & first, Cell & last )
{
first = *g;
last = *(g+1);
}
void Grid( const int x, const int y, const int z, Cell & first, Cell & last )
{
Cell* g = Grid(x,y,z);
first = *g;
last = *(g+1);
}
/// Set the bounding box of the grid
///We need some extra space for numerical precision.
void SetBBox( const Box3x & b )
{
bbox = b;
ScalarType t = bbox.Diag()/100.0;
if(t == 0) t = ScalarType(1e20); // <--- Some doubts on this (Cigno 5/1/04)
bbox.Offset(t);
dim = bbox.max - bbox.min;
}
/// Dato un punto 3d ritorna l'indice del box corrispondente
inline void PToIP(const Point3x & p, Point3i &pi ) const
{
Point3x t = p - bbox.min;
pi[0] = int( t[0]/voxel[0] );
pi[1] = int( t[1]/voxel[1] );
pi[2] = int( t[2]/voxel[2] );
}
/// Dato un box reale ritorna gli indici dei voxel compresi dentro un ibox
void BoxToIBox( const Box3x & b, Box3i & ib ) const
{
PToIP(b.min,ib.min);
PToIP(b.max,ib.max);
}
void ShowStats(FILE *fp)
{
// Conto le entry
//int nentry = 0;
//Hist H;
//H.SetRange(0,1000,1000);
//int pg;
//for(pg=0;pg<grid.size()-1;++pg)
// if( grid[pg]!=grid[pg+1] )
// {
// ++nentry;
// H.Add(grid[pg+1]-grid[pg]);
// }
// fprintf(fp,"Uniform Grid: %d x %d x %d (%d voxels), %.1f%% full, %d links \nNon empty Cell Occupancy Distribution Avg: %f (%4.0f %4.0f %4.0f) \n",
// siz[0],siz[1],siz[2],grid.size()-1,
// double(nentry)*100.0/(grid.size()-1),links.size(),H.Avg(),H.Percentile(.25),H.Percentile(.5),H.Percentile(.75)
//
//);
}
/** Returns the closest posistion of a point p and its distance
@param p a 3d point
@return The closest element
*/
ObjPtr GetClosest( const Point3x & p, ScalarType & min_dist, Point3x & res)
{
ScalarType dx = ( (p[0]-bbox.min[0])/voxel[0] );
ScalarType dy = ( (p[1]-bbox.min[1])/voxel[1] );
ScalarType dz = ( (p[2]-bbox.min[2])/voxel[2] );
int ix = int( dx );
int iy = int( dy );
int iz = int( dz );
double voxel_min=voxel[0];
if (voxel_min<voxel[1]) voxel_min=voxel[1];
if (voxel_min<voxel[2]) voxel_min=voxel[2];
ScalarType radius=(dx-ScalarType(ix));
if (radius>0.5) radius=(1.0-radius); radius*=voxel[0];
ScalarType tmp=dy-ScalarType(iy);
if (tmp>0.5) tmp=1.0-tmp;
tmp*=voxel[1];
if (radius>tmp) radius=tmp;
tmp=dz-ScalarType(iz);
if (tmp>0.5) tmp=1.0-tmp;
tmp*=voxel[2];
if (radius>tmp) radius=tmp;
Point3x t_res;
//ScalarType min_dist=1e10;
ObjPtr winner=NULL;
void GetBBox(Box3<ScalarType> &b)
which return the bounding box of the object
Link *first, *last;
Link *l;
if ((ix>=0) && (iy>=0) && (iz>=0) &&
(ix<siz[0]) && (iy<siz[1]) && (iz<siz[2])) {
Grid( ix, iy, iz, first, last );
for(l=first;l!=last;++l)
{
if (!l->Elem()->IsD() && l->Elem()->Dist(p,min_dist,t_res)) {
winner=&*(l->Elem());
res=t_res;
}
};
};
//return winner;
Point3i done_min=Point3i(ix,iy,iz), done_max=Point3i(ix,iy,iz);
*/
//printf(".");
while (min_dist>radius) {
//if (dy-ScalarType(iy))
done_min[0]--; if (done_min[0]<0) done_min[0]=0;
done_min[1]--; if (done_min[1]<0) done_min[1]=0;
done_min[2]--; if (done_min[2]<0) done_min[2]=0;
done_max[0]++; if (done_max[0]>=siz[0]-1) done_max[0]=siz[0]-1;
done_max[1]++; if (done_max[1]>=siz[1]-1) done_max[1]=siz[1]-1;
done_max[2]++; if (done_max[2]>=siz[2]-1) done_max[2]=siz[2]-1;
radius+=voxel_min;
//printf("+");
for (ix=done_min[0]; ix<=done_max[0]; ix++)
for (iy=done_min[1]; iy<=done_max[1]; iy++)
for (iz=done_min[2]; iz<=done_max[2]; iz++)
{
Grid( ix, iy, iz, first, last );
for(l=first;l!=last;++l)
{
if (!l->Elem()->IsD() && l->Elem()->Dist(p,min_dist,t_res)) {
winner=&*(l->Elem());
res=t_res;
};
};
}
};
return winner;
};
/// Inserisce una mesh nella griglia. Nota: prima bisogna
/// chiamare SetBBox che setta dim in maniera corretta
void Set( ContainerType & s )
{
Set(s,s.size());
}
/// Inserisce una mesh nella griglia. Nota: prima bisogna
/// chiamare SetBBox che setta dim in maniera corretta
void Set( ContainerType & s,int _size )
{
Point3i _siz;
BestDim( _size, dim, _siz );
Set(s,_siz);
}
void Set(ContainerType & s, Point3i _siz)
{
siz=_siz;
// Calcola la dimensione della griglia
voxel[0] = dim[0]/siz[0];
voxel[1] = dim[1]/siz[1];
voxel[2] = dim[2]/siz[2];
// "Alloca" la griglia: +1 per la sentinella
grid.resize( siz[0]*siz[1]*siz[2]+1 );
// Ciclo inserimento dei tetraedri: creazione link
links.clear();
typename ContainerType::iterator pt;
for(pt=s.begin(); pt!=s.end(); ++pt)
template < typename ContainerType,class FLT=float >
class GridStaticPtr:public BasicGrid<FLT>
{
Box3x bb; // Boundig box del tetraedro corrente
(*pt).GetBBox(bb);
bb.Intersect(bbox);
if(! bb.IsNull() )
{
public:
Box3i ib; // Boundig box in voxels
BoxToIBox( bb,ib );
int x,y,z;
for(z=ib.min[2];z<=ib.max[2];++z)
typedef typename ContainerType::value_type ObjType;
typedef ObjType* ObjPtr;
typedef typename ObjType::ScalarType ScalarType;
typedef Point3<ScalarType> CoordType;
typedef Box3<ScalarType> Box3x;
typedef Line3<ScalarType> Line3x;
/** Internal class for keeping the first pointer of object.
Definizione Link dentro la griglia. Classe di supporto per GridStaticObj.
*/
class Link
{
int bz = z*siz[1];
for(y=ib.min[1];y<=ib.max[1];++y)
{
int by = (y+bz)*siz[0];
for(x=ib.min[0];x<=ib.max[0];++x)
// Inserire calcolo cella corrente
// if( pt->Intersect( ... )
links.push_back( Link(pt,by+x) );
}
public:
/// Costruttore di default
inline Link(){};
/// Costruttore con inizializzatori
inline Link(ObjPtr nt, const int ni ){
assert(ni>=0);
t = nt;
i = ni;
};
inline bool operator < ( const Link & l ) const{ return i < l.i; }
inline bool operator <= ( const Link & l ) const{ return i <= l.i; }
inline bool operator > ( const Link & l ) const{ return i > l.i; }
inline bool operator >= ( const Link & l ) const{ return i >= l.i; }
inline bool operator == ( const Link & l ) const{ return i == l.i; }
inline bool operator != ( const Link & l ) const{ return i != l.i; }
inline typename ObjPtr & Elem() {
return t;
}
inline int & Index() {
return i;
}
private:
/// Puntatore all'elemento T
ObjPtr t;
/// Indirizzo del voxel dentro la griglia
int i;
};//end class Link
typedef Link* Cell;
typedef typename Cell CellIterator;
std::vector<Link> links; /// Insieme di tutti i links
std::vector<Cell> grid; /// Griglia vera e propria
/// Dato un punto, ritorna la cella che lo contiene
inline Cell* Grid( const Point3d & p )
{
int x = int( (p[0]-bbox.min[0])/voxel[0] );
int y = int( (p[1]-bbox.min[1])/voxel[1] );
int z = int( (p[2]-bbox.min[2])/voxel[2] );
#ifndef NDEBUG
if ( x<0 || x>=siz[0] || y<0 || y>=siz[1] || z<0 || z>=siz[2] )
return NULL;
else
#endif
return grid.begin() + ( x+siz[0]*(y+siz[1]*z) );
}
}
}
// Push della sentinella
links.push_back( Link((typename ContainerType::iterator)NULL,
(grid.size()-1)));
// Ordinamento dei links
sort( links.begin(), links.end() );
// Creazione puntatori ai links
typename std::vector<Link>::iterator pl;
unsigned int pg;
pl = links.begin();
for(pg=0;pg<grid.size();++pg)
{
assert(pl!=links.end());
grid[pg] = &*pl;
while( (int)pg == pl->Index() ) // Trovato inizio
{
++pl; // Ricerca prossimo blocco
if(pl==links.end())
break;
}
}
}
int MemUsed()
{
return sizeof(GridStaticPtr)+ sizeof(Link)*links.size() +
sizeof(Cell) * grid.size();
}
}; //end class GridStaticObj
/// Date le coordinate ritorna la cella
inline Cell* Grid( const int x, const int y, const int z )
{
#ifndef NDEBUG
if ( x<0 || x>=siz[0] || y<0 || y>=siz[1] || z<0 || z>=siz[2] )
assert(0);
//return NULL;
else
#endif
assert(((unsigned int)x+siz[0]*y+siz[1]*z)<grid.size());
return &*grid.begin() + ( x+siz[0]*(y+siz[1]*z) );
}
/// Date le coordinate di un grid point (corner minx,miy,minz) ritorna le celle che condividono
/// l'edge cell che parte dal grid point in direzione axis
inline void Grid( Point3i p, const int axis,
std::vector<Cell*> & cl)
{
#ifndef NDEBUG
if ( p[0]<0 || p[0]>siz[0] ||
p[1]<0 || p[1]>siz[1] ||
p[2]<0 || p[2]>siz[2] )
assert(0);
//return NULL;
else
#endif
assert(((unsigned int) p[0]+siz[0]*p[1]+siz[1]*p[2])<grid.size());
int axis0 = (axis+1)%3;
int axis1 = (axis+2)%3;
int i,j,x,y;
x = p[axis0];
y = p[axis1];
for(i = max(x-1,0); i <= min( x,siz[axis0]-1);++i)
for(j = max(y-1,0); j <= min( y,siz[axis1]-1);++j){
p[axis0]=i;
p[axis1]=j;
cl.push_back(Grid(p[0]+siz[0]*(p[1]+siz[1]*p[2])));
}
}
Cell* Grid(const int i) {
return &grid[i];
}
void Grid( const Point3d & p, Cell & first, Cell & last )
{
Cell* g = Grid(p);
first = *g;
last = *(g+1);
}
void Grid( const Cell* g, Cell & first, Cell & last )
{
first = *g;
last = *(g+1);
}
void Grid( const int x, const int y, const int z, Cell & first, Cell & last )
{
Cell* g = Grid(x,y,z);
first = *g;
last = *(g+1);
}
/// Set the bounding box of the grid
///We need some extra space for numerical precision.
void SetBBox( const Box3x & b )
{
bbox = b;
ScalarType t = bbox.Diag()/100.0;
if(t == 0) t = ScalarType(1e20); // <--- Some doubts on this (Cigno 5/1/04)
bbox.Offset(t);
dim = bbox.max - bbox.min;
}
void ShowStats(FILE *fp)
{
// Conto le entry
//int nentry = 0;
//Hist H;
//H.SetRange(0,1000,1000);
//int pg;
//for(pg=0;pg<grid.size()-1;++pg)
// if( grid[pg]!=grid[pg+1] )
// {
// ++nentry;
// H.Add(grid[pg+1]-grid[pg]);
// }
// fprintf(fp,"Uniform Grid: %d x %d x %d (%d voxels), %.1f%% full, %d links \nNon empty Cell Occupancy Distribution Avg: %f (%4.0f %4.0f %4.0f) \n",
// siz[0],siz[1],siz[2],grid.size()-1,
// double(nentry)*100.0/(grid.size()-1),links.size(),H.Avg(),H.Percentile(.25),H.Percentile(.5),H.Percentile(.75)
//
//);
}
/** Returns the closest posistion of a point p and its distance
@param p a 3d point
@return The closest element
*/
ObjPtr GetClosest( const CoordType & p, ScalarType & min_dist, CoordType & res)
{
ScalarType dx = ( (p[0]-bbox.min[0])/voxel[0] );
ScalarType dy = ( (p[1]-bbox.min[1])/voxel[1] );
ScalarType dz = ( (p[2]-bbox.min[2])/voxel[2] );
int ix = int( dx );
int iy = int( dy );
int iz = int( dz );
double voxel_min=voxel[0];
if (voxel_min<voxel[1]) voxel_min=voxel[1];
if (voxel_min<voxel[2]) voxel_min=voxel[2];
ScalarType radius=(dx-ScalarType(ix));
if (radius>0.5) radius=(1.0-radius); radius*=voxel[0];
ScalarType tmp=dy-ScalarType(iy);
if (tmp>0.5) tmp=1.0-tmp;
tmp*=voxel[1];
if (radius>tmp) radius=tmp;
tmp=dz-ScalarType(iz);
if (tmp>0.5) tmp=1.0-tmp;
tmp*=voxel[2];
if (radius>tmp) radius=tmp;
CoordType t_res;
//ScalarType min_dist=1e10;
ObjPtr winner=NULL;
Link *first, *last;
Link *l;
if ((ix>=0) && (iy>=0) && (iz>=0) &&
(ix<siz[0]) && (iy<siz[1]) && (iz<siz[2])) {
Grid( ix, iy, iz, first, last );
for(l=first;l!=last;++l)
{
if (!l->Elem()->IsD() && l->Elem()->Dist(p,min_dist,t_res)) {
winner=&*(l->Elem());
res=t_res;
}
};
};
//return winner;
Point3i done_min=Point3i(ix,iy,iz), done_max=Point3i(ix,iy,iz);
//printf(".");
while (min_dist>radius) {
//if (dy-ScalarType(iy))
done_min[0]--; if (done_min[0]<0) done_min[0]=0;
done_min[1]--; if (done_min[1]<0) done_min[1]=0;
done_min[2]--; if (done_min[2]<0) done_min[2]=0;
done_max[0]++; if (done_max[0]>=siz[0]-1) done_max[0]=siz[0]-1;
done_max[1]++; if (done_max[1]>=siz[1]-1) done_max[1]=siz[1]-1;
done_max[2]++; if (done_max[2]>=siz[2]-1) done_max[2]=siz[2]-1;
radius+=voxel_min;
//printf("+");
for (ix=done_min[0]; ix<=done_max[0]; ix++)
for (iy=done_min[1]; iy<=done_max[1]; iy++)
for (iz=done_min[2]; iz<=done_max[2]; iz++)
{
Grid( ix, iy, iz, first, last );
for(l=first;l!=last;++l)
{
if (!l->Elem()->IsD() && l->Elem()->Dist(p,min_dist,t_res)) {
winner=&*(l->Elem());
res=t_res;
};
};
}
};
return winner;
};
/// Inserisce una mesh nella griglia. Nota: prima bisogna
/// chiamare SetBBox che setta dim in maniera corretta
void Set( ContainerType & s )
{
Set(s,s.size());
}
/// Inserisce una mesh nella griglia. Nota: prima bisogna
/// chiamare SetBBox che setta dim in maniera corretta
void Set( ContainerType & s,int _size )
{
Point3i _siz;
BestDim( _size, dim, _siz );
Set(s,_siz);
}
void Set(ContainerType & s, Point3i _siz)
{
siz=_siz;
// Calcola la dimensione della griglia
voxel[0] = dim[0]/siz[0];
voxel[1] = dim[1]/siz[1];
voxel[2] = dim[2]/siz[2];
// "Alloca" la griglia: +1 per la sentinella
grid.resize( siz[0]*siz[1]*siz[2]+1 );
// Ciclo inserimento dei tetraedri: creazione link
links.clear();
typename ContainerType::iterator pt;
for(pt=s.begin(); pt!=s.end(); ++pt)
{
Box3x bb; // Boundig box del tetraedro corrente
(*pt).GetBBox(bb);
bb.Intersect(bbox);
if(! bb.IsNull() )
{
Box3i ib; // Boundig box in voxels
BoxToIBox( bb,ib );
int x,y,z;
for(z=ib.min[2];z<=ib.max[2];++z)
{
int bz = z*siz[1];
for(y=ib.min[1];y<=ib.max[1];++y)
{
int by = (y+bz)*siz[0];
for(x=ib.min[0];x<=ib.max[0];++x)
// Inserire calcolo cella corrente
// if( pt->Intersect( ... )
links.push_back( Link(&(*pt),by+x) );
}
}
}
}
// Push della sentinella
/*links.push_back( Link((typename ContainerType::iterator)NULL,
(grid.size()-1)));*/
links.push_back( Link(NULL,
(grid.size()-1)));
// Ordinamento dei links
sort( links.begin(), links.end() );
// Creazione puntatori ai links
typename std::vector<Link>::iterator pl;
unsigned int pg;
pl = links.begin();
for(pg=0;pg<grid.size();++pg)
{
assert(pl!=links.end());
grid[pg] = &*pl;
while( (int)pg == pl->Index() ) // Trovato inizio
{
++pl; // Ricerca prossimo blocco
if(pl==links.end())
break;
}
}
}
int MemUsed()
{
return sizeof(GridStaticPtr)+ sizeof(Link)*links.size() +
sizeof(Cell) * grid.size();
}
}; //end class GridStaticObj
}; // end namespace
#endif