Added method PerBitPolygonFaceNormalized for computing normals for polygonal meshes kept with fauxbit.
Added a few Require just for safety
This commit is contained in:
parent
44741d7f36
commit
8ba0e6d6aa
|
@ -8,7 +8,7 @@
|
|||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
|
@ -25,6 +25,7 @@
|
|||
#define __VCG_TRI_UPDATE_NORMALS
|
||||
|
||||
#include <vcg/complex/algorithms/update/flag.h>
|
||||
#include <vcg/complex/algorithms/polygon_support.h>
|
||||
#include <vcg/math/matrix44.h>
|
||||
#include <vcg/complex/exception.h>
|
||||
|
||||
|
@ -47,7 +48,7 @@ template <class ComputeMeshType>
|
|||
class UpdateNormal
|
||||
{
|
||||
public:
|
||||
typedef ComputeMeshType MeshType;
|
||||
typedef ComputeMeshType MeshType;
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename VertexType::NormalType NormalType;
|
||||
|
@ -103,10 +104,10 @@ static void PerVertexClear(ComputeMeshType &m, bool ClearAllVertNormal=false)
|
|||
|
||||
/// \brief Calculates the vertex normal as an angle weighted average. It does not need or exploit current face normals.
|
||||
/**
|
||||
The normal of a vertex v computed as a weighted sum f the incident face normals.
|
||||
The normal of a vertex v computed as a weighted sum f the incident face normals.
|
||||
The weight is simlply the angle of the involved wedge. Described in:
|
||||
|
||||
G. Thurmer, C. A. Wuthrich
|
||||
|
||||
G. Thurmer, C. A. Wuthrich
|
||||
"Computing vertex normals from polygonal facets"
|
||||
Journal of Graphics Tools, 1998
|
||||
*/
|
||||
|
@ -118,22 +119,22 @@ Journal of Graphics Tools, 1998
|
|||
if( !(*f).IsD() && (*f).IsR() )
|
||||
{
|
||||
typename FaceType::NormalType t = vcg::NormalizedNormal(*f);
|
||||
NormalType e0 = ((*f).V1(0)->cP()-(*f).V0(0)->cP()).Normalize();
|
||||
NormalType e1 = ((*f).V1(1)->cP()-(*f).V0(1)->cP()).Normalize();
|
||||
NormalType e2 = ((*f).V1(2)->cP()-(*f).V0(2)->cP()).Normalize();
|
||||
|
||||
(*f).V(0)->N() += t*AngleN(e0,-e2);
|
||||
(*f).V(1)->N() += t*AngleN(-e0,e1);
|
||||
(*f).V(2)->N() += t*AngleN(-e1,e2);
|
||||
NormalType e0 = ((*f).V1(0)->cP()-(*f).V0(0)->cP()).Normalize();
|
||||
NormalType e1 = ((*f).V1(1)->cP()-(*f).V0(1)->cP()).Normalize();
|
||||
NormalType e2 = ((*f).V1(2)->cP()-(*f).V0(2)->cP()).Normalize();
|
||||
|
||||
(*f).V(0)->N() += t*AngleN(e0,-e2);
|
||||
(*f).V(1)->N() += t*AngleN(-e0,e1);
|
||||
(*f).V(2)->N() += t*AngleN(-e1,e2);
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Calculates the vertex normal using the Max et al. weighting scheme. It does not need or exploit current face normals.
|
||||
/**
|
||||
The normal of a vertex v is computed according to the formula described by Nelson Max in
|
||||
The normal of a vertex v is computed according to the formula described by Nelson Max in
|
||||
Max, N., "Weights for Computing Vertex Normals from Facet Normals", Journal of Graphics Tools, 4(2) (1999)
|
||||
|
||||
The weight for each wedge is the cross product of the two edge over the product of the square of the two edge lengths.
|
||||
|
||||
The weight for each wedge is the cross product of the two edge over the product of the square of the two edge lengths.
|
||||
According to the original paper it is perfect only for spherical surface, but it should perform well...
|
||||
*/
|
||||
static void PerVertexNelsonMaxWeighted(ComputeMeshType &m)
|
||||
|
@ -144,13 +145,13 @@ static void PerVertexNelsonMaxWeighted(ComputeMeshType &m)
|
|||
if( !(*f).IsD() && (*f).IsR() )
|
||||
{
|
||||
typename FaceType::NormalType t = vcg::Normal(*f);
|
||||
ScalarType e0 = SquaredDistance((*f).V0(0)->cP(),(*f).V1(0)->cP());
|
||||
ScalarType e1 = SquaredDistance((*f).V0(1)->cP(),(*f).V1(1)->cP());
|
||||
ScalarType e2 = SquaredDistance((*f).V0(2)->cP(),(*f).V1(2)->cP());
|
||||
|
||||
(*f).V(0)->N() += t/(e0*e2);
|
||||
(*f).V(1)->N() += t/(e0*e1);
|
||||
(*f).V(2)->N() += t/(e1*e2);
|
||||
ScalarType e0 = SquaredDistance((*f).V0(0)->cP(),(*f).V1(0)->cP());
|
||||
ScalarType e1 = SquaredDistance((*f).V0(1)->cP(),(*f).V1(1)->cP());
|
||||
ScalarType e2 = SquaredDistance((*f).V0(2)->cP(),(*f).V1(2)->cP());
|
||||
|
||||
(*f).V(0)->N() += t/(e0*e2);
|
||||
(*f).V(1)->N() += t/(e0*e1);
|
||||
(*f).V(2)->N() += t/(e1*e2);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -170,15 +171,13 @@ static void PerFace(ComputeMeshType &m)
|
|||
///
|
||||
/// Not normalized. Use PerPolygonalFaceNormalized() or call NormalizePerFace() if you need unit length per face normals.
|
||||
static void PerPolygonalFace(ComputeMeshType &m) {
|
||||
// check input type mesh
|
||||
if (!HasPerFaceNormal(m))
|
||||
throw vcg::MissingComponentException("PerFaceNormal");
|
||||
// for each face
|
||||
for(FaceIterator f = m.face.begin(); f != m.face.end(); f++)
|
||||
if (!f->IsD()) {
|
||||
f->N().SetZero();
|
||||
for (int v = 0; v < f->VN(); v++)
|
||||
f->N() += f->V(v)->P() ^ f->V((v+1)%f->VN())->P();
|
||||
tri::RequirePerFaceNormal(m);
|
||||
tri::RequirePolygonalMesh(m);
|
||||
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); fi++)
|
||||
if (!fi->IsD()) {
|
||||
fi->N().SetZero();
|
||||
for (int i = 0; i < fi->VN(); i++)
|
||||
fi->N() += fi->V0(i)->P() ^ fi->V1(i)->P();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -231,8 +230,8 @@ static void NormalizePerVertex(ComputeMeshType &m)
|
|||
{
|
||||
tri::RequirePerVertexNormal(m);
|
||||
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||||
if( !(*vi).IsD() && (*vi).IsRW() )
|
||||
(*vi).N().Normalize();
|
||||
if( !(*vi).IsD() && (*vi).IsRW() )
|
||||
(*vi).N().Normalize();
|
||||
}
|
||||
|
||||
/// \brief Normalize the length of the face normals.
|
||||
|
@ -250,10 +249,10 @@ static void NormalizePerFaceByArea(ComputeMeshType &m)
|
|||
FaceIterator fi;
|
||||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
if( !(*fi).IsD() )
|
||||
{
|
||||
(*fi).N().Normalize();
|
||||
(*fi).N() = (*fi).N() * DoubleArea(*fi);
|
||||
}
|
||||
{
|
||||
(*fi).N().Normalize();
|
||||
(*fi).N() = (*fi).N() * DoubleArea(*fi);
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Equivalent to PerVertex() and NormalizePerVertex()
|
||||
|
@ -272,9 +271,7 @@ static void PerFaceNormalized(ComputeMeshType &m)
|
|||
|
||||
/// \brief Equivalent to PerPolygonalFace() and NormalizePerFace()
|
||||
static void PerPolygonalFaceNormalized(ComputeMeshType &m) {
|
||||
// compute normals
|
||||
PerPolygonalFace(m);
|
||||
// normalize them
|
||||
NormalizePerFace(m);
|
||||
}
|
||||
|
||||
|
@ -288,25 +285,24 @@ static void PerVertexPerFace(ComputeMeshType &m)
|
|||
/// \brief Equivalent to PerVertexNormalized() and PerFace().
|
||||
static void PerVertexNormalizedPerFace(ComputeMeshType &m)
|
||||
{
|
||||
PerVertexPerFace(m);
|
||||
NormalizePerVertex(m);
|
||||
PerVertexPerFace(m);
|
||||
NormalizePerVertex(m);
|
||||
}
|
||||
|
||||
/// \brief Equivalent to PerVertexNormalizedPerFace() and NormalizePerFace().
|
||||
static void PerVertexNormalizedPerFaceNormalized(ComputeMeshType &m)
|
||||
{
|
||||
PerVertexNormalizedPerFace(m);
|
||||
NormalizePerFace(m);
|
||||
PerVertexNormalizedPerFace(m);
|
||||
NormalizePerFace(m);
|
||||
}
|
||||
|
||||
/// \brief Exploit bitquads to compute a per-polygon face normal
|
||||
static void PerBitQuadFaceNormalized(ComputeMeshType &m)
|
||||
{
|
||||
PerFace(m);
|
||||
FaceIterator f;
|
||||
for(f=m.face.begin();f!=m.face.end();++f) {
|
||||
PerFace(m);
|
||||
for(FaceIterator f=m.face.begin();f!=m.face.end();++f) {
|
||||
if( !(*f).IsD() ) {
|
||||
for (int k=0; k<3; k++) if (f->IsF(k))
|
||||
for (int k=0; k<3; k++) if (f->IsF(k))
|
||||
if (&*f < f->FFp(k)) {
|
||||
f->N() = f->FFp(k)->N() = (f->FFp(k)->N() + f->N()).Normalize();
|
||||
}
|
||||
|
@ -314,22 +310,46 @@ static void PerBitQuadFaceNormalized(ComputeMeshType &m)
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
/// \brief Exploit bitquads to compute a per-polygon face normal
|
||||
static void PerBitPolygonFaceNormalized(ComputeMeshType &m)
|
||||
{
|
||||
PerFace(m);
|
||||
tri::RequireCompactness(m);
|
||||
tri::RequireTriangularMesh(m);
|
||||
tri::UpdateFlags<ComputeMeshType>::FaceClearV(m);
|
||||
std::vector<VertexPointer> vertVec;
|
||||
std::vector<FacePointer> faceVec;
|
||||
for(size_t i=0;i<m.face.size();++i)
|
||||
if(!m.face[i].IsV())
|
||||
{
|
||||
tri::PolygonSupport<MeshType,MeshType>::ExtractPolygon(&(m.face[i]),vertVec,faceVec);
|
||||
CoordType nf(0,0,0);
|
||||
for(size_t j=0;j<faceVec.size();++j)
|
||||
nf+=faceVec[j]->N().Normalize() * DoubleArea(*faceVec[j]);
|
||||
|
||||
nf.Normalize();
|
||||
|
||||
for(size_t j=0;j<faceVec.size();++j)
|
||||
faceVec[j]->N()=nf;
|
||||
}
|
||||
}
|
||||
/// \brief Multiply the vertex normals by the matrix passed. By default, the scale component is removed.
|
||||
static void PerVertexMatrix(ComputeMeshType &m, const Matrix44<ScalarType> &mat, bool remove_scaling= true)
|
||||
{
|
||||
tri::RequirePerVertexNormal(m);
|
||||
float scale;
|
||||
|
||||
Matrix33<ScalarType> mat33(mat,3);
|
||||
|
||||
Matrix33<ScalarType> mat33(mat,3);
|
||||
|
||||
|
||||
if(remove_scaling){
|
||||
scale = pow(mat33.Determinant(),(ScalarType)(1.0/3.0));
|
||||
mat33[0][0]/=scale;
|
||||
mat33[1][1]/=scale;
|
||||
mat33[2][2]/=scale;
|
||||
}
|
||||
|
||||
if(remove_scaling){
|
||||
scale = pow(mat33.Determinant(),(ScalarType)(1.0/3.0));
|
||||
mat33[0][0]/=scale;
|
||||
mat33[1][1]/=scale;
|
||||
mat33[2][2]/=scale;
|
||||
}
|
||||
|
||||
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||||
if( !(*vi).IsD() && (*vi).IsRW() )
|
||||
(*vi).N() = mat33*(*vi).N();
|
||||
|
@ -341,17 +361,17 @@ static void PerFaceMatrix(ComputeMeshType &m, const Matrix44<ScalarType> &mat, b
|
|||
tri::RequirePerFaceNormal(m);
|
||||
float scale;
|
||||
|
||||
Matrix33<ScalarType> mat33(mat,3);
|
||||
Matrix33<ScalarType> mat33(mat,3);
|
||||
|
||||
if( !HasPerFaceNormal(m)) return;
|
||||
if( !HasPerFaceNormal(m)) return;
|
||||
|
||||
if(remove_scaling){
|
||||
scale = pow(mat33.Determinant(),ScalarType(1.0/3.0));
|
||||
mat33[0][0]/=scale;
|
||||
mat33[1][1]/=scale;
|
||||
mat33[2][2]/=scale;
|
||||
}
|
||||
|
||||
if(remove_scaling){
|
||||
scale = pow(mat33.Determinant(),ScalarType(1.0/3.0));
|
||||
mat33[0][0]/=scale;
|
||||
mat33[1][1]/=scale;
|
||||
mat33[2][2]/=scale;
|
||||
}
|
||||
|
||||
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
if( !(*fi).IsD() && (*fi).IsRW() )
|
||||
(*fi).N() = mat33* (*fi).N();
|
||||
|
@ -396,32 +416,32 @@ static void PerFaceRW(ComputeMeshType &m, bool normalize=false)
|
|||
{
|
||||
tri::RequirePerFaceNormal(m);
|
||||
FaceIterator f;
|
||||
bool cn = true;
|
||||
bool cn = true;
|
||||
|
||||
if(normalize)
|
||||
{
|
||||
for(f=m.m.face.begin();f!=m.m.face.end();++f)
|
||||
if( !(*f).IsD() && (*f).IsRW() )
|
||||
{
|
||||
for(int j=0; j<3; ++j)
|
||||
if( !(*f).V(j)->IsR()) cn = false;
|
||||
if( cn ) face::ComputeNormalizedNormal(*f);
|
||||
cn = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(f=m.m.face.begin();f!=m.m.face.end();++f)
|
||||
if( !(*f).IsD() && (*f).IsRW() )
|
||||
{
|
||||
for(int j=0; j<3; ++j)
|
||||
if( !(*f).V(j)->IsR()) cn = false;
|
||||
if(normalize)
|
||||
{
|
||||
for(f=m.m.face.begin();f!=m.m.face.end();++f)
|
||||
if( !(*f).IsD() && (*f).IsRW() )
|
||||
{
|
||||
for(int j=0; j<3; ++j)
|
||||
if( !(*f).V(j)->IsR()) cn = false;
|
||||
if( cn ) face::ComputeNormalizedNormal(*f);
|
||||
cn = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(f=m.m.face.begin();f!=m.m.face.end();++f)
|
||||
if( !(*f).IsD() && (*f).IsRW() )
|
||||
{
|
||||
for(int j=0; j<3; ++j)
|
||||
if( !(*f).V(j)->IsR()) cn = false;
|
||||
|
||||
if( cn )
|
||||
(*f).ComputeNormal();
|
||||
cn = true;
|
||||
}
|
||||
}
|
||||
if( cn )
|
||||
(*f).ComputeNormal();
|
||||
cn = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue