Added a number of 'template' and 'typename' keyword to comply clang...

This commit is contained in:
Paolo Cignoni 2015-10-21 12:01:48 +00:00
parent 3f1b4519b5
commit 9a48f16579
1 changed files with 276 additions and 274 deletions

View File

@ -41,290 +41,292 @@ class ConvexHull
public:
typedef typename InputMesh::ScalarType ScalarType;
typedef typename InputMesh::VertexPointer InputVertexPointer;
typedef typename InputMesh::VertexIterator InputVertexIterator;
typedef typename CHMesh::VertexIterator CHVertexIterator;
typedef typename CHMesh::VertexPointer CHVertexPointer;
typedef typename CHMesh::FaceIterator CHFaceIterator;
typedef typename CHMesh::FacePointer CHFacePointer;
typedef typename InputMesh::ScalarType ScalarType;
typedef typename InputMesh::VertexPointer InputVertexPointer;
typedef typename InputMesh::VertexIterator InputVertexIterator;
typedef typename CHMesh::VertexIterator CHVertexIterator;
typedef typename CHMesh::VertexPointer CHVertexPointer;
typedef typename CHMesh::FaceIterator CHFaceIterator;
typedef typename CHMesh::FacePointer CHFacePointer;
private:
typedef std::pair<InputVertexPointer, ScalarType> Pair;
typedef std::pair<InputVertexPointer, ScalarType> Pair;
// Initialize the convex hull with the biggest tetraedron created using the vertices of the input mesh
static void InitConvexHull(InputMesh& mesh, CHMesh& convexHull)
{
CMesh::PerVertexAttributeHandle<ScalarType> indexInputVertex = vcg::tri::Allocator<InputMesh>::GetPerVertexAttribute<ScalarType>(mesh, std::string("indexInput"));
InputVertexPointer v[3];
//Find the 6 points with min/max coordinate values
InputVertexIterator vi = mesh.vert.begin();
std::vector<InputVertexPointer> minMax(6, &(*vi));
for (; vi != mesh.vert.end(); vi++)
{
if ((*vi).P().X() < (*minMax[0]).P().X())
minMax[0] = &(*vi);
if ((*vi).P().Y() < (*minMax[1]).P().Y())
minMax[1] = &(*vi);
if ((*vi).P().Z() < (*minMax[2]).P().Z())
minMax[2] = &(*vi);
if ((*vi).P().X() > (*minMax[3]).P().X())
minMax[3] = &(*vi);
if ((*vi).P().Y() > (*minMax[4]).P().Y())
minMax[4] = &(*vi);
if ((*vi).P().Z() > (*minMax[5]).P().Z())
minMax[5] = &(*vi);
}
//Find the farthest two points
ScalarType maxDist = 0;
for (int i = 0; i < 6; i++)
{
for (int j = i + 1; j < 6; j++)
{
float dist = (minMax[i]->P() - minMax[j]->P()).SquaredNorm();
if (dist > maxDist)
{
maxDist = dist;
v[0] = minMax[i];
v[1] = minMax[j];
}
}
}
//Find the third point to create the base of the tetrahedron
vcg::Line3<ScalarType> line(v[0]->P(), (v[0]->P() - v[1]->P()));
maxDist = 0;
for (vi = mesh.vert.begin(); vi != mesh.vert.end(); vi++)
{
ScalarType dist = vcg::Distance(line, (*vi).P());
if (dist > maxDist)
{
maxDist = dist;
v[2] = &(*vi);
}
}
//Create face in the convex hull
CHVertexIterator chVi = vcg::tri::Allocator<CHMesh>::AddVertices(convexHull, 3);
for (int i = 0; i < 3; i++)
{
(*chVi).P().Import(v[i]->P());
indexInputVertex[chVi] = vcg::tri::Index(mesh, v[i]);
chVi++;
}
CHFaceIterator fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, 0, 1, 2);
(*fi).N() = vcg::NormalizedTriangleNormal(*fi);
// Initialize the convex hull with the biggest tetraedron created using the vertices of the input mesh
static void InitConvexHull(InputMesh& mesh, CHMesh& convexHull)
{
typename CHMesh:: template PerVertexAttributeHandle<int> indexInputVertex = Allocator<InputMesh>::template GetPerVertexAttribute<int>(mesh, std::string("indexInput"));
InputVertexPointer v[3];
//Find the 6 points with min/max coordinate values
InputVertexIterator vi = mesh.vert.begin();
std::vector<InputVertexPointer> minMax(6, &(*vi));
for (; vi != mesh.vert.end(); vi++)
{
if ((*vi).P().X() < (*minMax[0]).P().X())
minMax[0] = &(*vi);
if ((*vi).P().Y() < (*minMax[1]).P().Y())
minMax[1] = &(*vi);
if ((*vi).P().Z() < (*minMax[2]).P().Z())
minMax[2] = &(*vi);
if ((*vi).P().X() > (*minMax[3]).P().X())
minMax[3] = &(*vi);
if ((*vi).P().Y() > (*minMax[4]).P().Y())
minMax[4] = &(*vi);
if ((*vi).P().Z() > (*minMax[5]).P().Z())
minMax[5] = &(*vi);
}
//Find the farthest two points
ScalarType maxDist = 0;
for (int i = 0; i < 6; i++)
{
for (int j = i + 1; j < 6; j++)
{
float dist = (minMax[i]->P() - minMax[j]->P()).SquaredNorm();
if (dist > maxDist)
{
maxDist = dist;
v[0] = minMax[i];
v[1] = minMax[j];
}
}
}
//Find the third point to create the base of the tetrahedron
vcg::Line3<ScalarType> line(v[0]->P(), (v[0]->P() - v[1]->P()));
maxDist = 0;
for (vi = mesh.vert.begin(); vi != mesh.vert.end(); vi++)
{
ScalarType dist = vcg::Distance(line, (*vi).P());
if (dist > maxDist)
{
maxDist = dist;
v[2] = &(*vi);
}
}
//Create face in the convex hull
CHVertexIterator chVi = vcg::tri::Allocator<CHMesh>::AddVertices(convexHull, 3);
for (int i = 0; i < 3; i++)
{
(*chVi).P().Import(v[i]->P());
indexInputVertex[chVi] = vcg::tri::Index(mesh, v[i]);
chVi++;
}
CHFaceIterator fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, 0, 1, 2);
(*fi).N() = vcg::NormalizedTriangleNormal(*fi);
//Find the fourth point to create the tetrahedron
InputVertexPointer v4;
float distance = 0;
float absDist = -1;
for (vi = mesh.vert.begin(); vi != mesh.vert.end(); vi++)
{
float tempDist = ((*vi).P() - (*fi).P(0)).dot((*fi).N());
if (abs(tempDist) > absDist)
{
distance = tempDist;
v4 = &(*vi);
absDist = abs(distance);
}
}
//Find the fourth point to create the tetrahedron
InputVertexPointer v4;
float distance = 0;
float absDist = -1;
for (vi = mesh.vert.begin(); vi != mesh.vert.end(); vi++)
{
float tempDist = ((*vi).P() - (*fi).P(0)).dot((*fi).N());
if (abs(tempDist) > absDist)
{
distance = tempDist;
v4 = &(*vi);
absDist = abs(distance);
}
}
//Flip the previous face if the fourth point is above the face
if (distance > 0)
{
(*fi).N() = -(*fi).N();
CHVertexPointer tempV = (*fi).V(1);
(*fi).V(1) = (*fi).V(2);
(*fi).V(2) = tempV;
}
//Flip the previous face if the fourth point is above the face
if (distance > 0)
{
(*fi).N() = -(*fi).N();
CHVertexPointer tempV = (*fi).V(1);
(*fi).V(1) = (*fi).V(2);
(*fi).V(2) = tempV;
}
//Create the other 3 faces of the tetrahedron
chVi = vcg::tri::Allocator<CHMesh>::AddVertices(convexHull, 1);
(*chVi).P().Import(v4->P());
indexInputVertex[chVi] = vcg::tri::Index(mesh, v4);
fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert[3], convexHull.face[0].V0(1), convexHull.face[0].V0(0));
(*fi).N() = vcg::NormalizedTriangleNormal(*fi);
fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert[3], convexHull.face[0].V1(1), convexHull.face[0].V1(0));
(*fi).N() = vcg::NormalizedTriangleNormal(*fi);
fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert[3], convexHull.face[0].V2(1), convexHull.face[0].V2(0));
(*fi).N() = vcg::NormalizedTriangleNormal(*fi);
vcg::tri::UpdateTopology<CHMesh>::FaceFace(convexHull);
};
//Create the other 3 faces of the tetrahedron
chVi = vcg::tri::Allocator<CHMesh>::AddVertices(convexHull, 1);
(*chVi).P().Import(v4->P());
indexInputVertex[chVi] = vcg::tri::Index(mesh, v4);
fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert[3], convexHull.face[0].V0(1), convexHull.face[0].V0(0));
(*fi).N() = vcg::NormalizedTriangleNormal(*fi);
fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert[3], convexHull.face[0].V1(1), convexHull.face[0].V1(0));
(*fi).N() = vcg::NormalizedTriangleNormal(*fi);
fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert[3], convexHull.face[0].V2(1), convexHull.face[0].V2(0));
(*fi).N() = vcg::NormalizedTriangleNormal(*fi);
vcg::tri::UpdateTopology<CHMesh>::FaceFace(convexHull);
};
public:
/**
Return the convex hull of the input mesh using the Quickhull algorithm.
For each vertex of the convex hull the algorithm stores the vertex index
of the original mesh in attribute "indexInput".
/**
Return the convex hull of the input mesh using the Quickhull algorithm.
For each vertex of the convex hull the algorithm stores the vertex index
of the original mesh in attribute "indexInput".
"The quickhull algorithm for convex hulls" by C. Bradford Barber et al.
ACM Transactions on Mathematical Software, Volume 22 Issue 4, Dec. 1996
*/
static bool ComputeConvexHull(InputMesh& mesh, CHMesh& convexHull)
{
vcg::tri::RequireFFAdjacency(convexHull);
vcg::tri::RequirePerFaceNormal(convexHull);
vcg::tri::Allocator<InputMesh>::CompactVertexVector(mesh);
CMesh::PerVertexAttributeHandle<ScalarType> indexInputVertex = vcg::tri::Allocator<InputMesh>::GetPerVertexAttribute<ScalarType>(mesh, std::string("indexInput"));
if (mesh.vert.size() < 4)
return false;
InitConvexHull(mesh, convexHull);
"The quickhull algorithm for convex hulls" by C. Bradford Barber et al.
ACM Transactions on Mathematical Software, Volume 22 Issue 4, Dec. 1996
*/
static bool ComputeConvexHull(InputMesh& mesh, CHMesh& convexHull)
{
vcg::tri::RequireFFAdjacency(convexHull);
vcg::tri::RequirePerFaceNormal(convexHull);
vcg::tri::Allocator<InputMesh>::CompactVertexVector(mesh);
typename CHMesh:: template PerVertexAttributeHandle<int> indexInputVertex = Allocator<InputMesh>::template GetPerVertexAttribute<int>(mesh, std::string("indexInput"));
if (mesh.vert.size() < 4)
return false;
InitConvexHull(mesh, convexHull);
//Build list of visible vertices for each convex hull face and find the furthest vertex for each face
std::vector<std::vector<InputVertexPointer>> listVertexPerFace(convexHull.face.size());
std::vector<Pair> furthestVexterPerFace(convexHull.face.size(), std::make_pair((InputVertexPointer)NULL, 0.0f));
for (int i = 0; i < mesh.vert.size(); i++)
{
ScalarType maxDist = 0;
for (int j = 0; j < convexHull.face.size(); j++)
{
ScalarType dist = (mesh.vert[i].P() - convexHull.face[j].P(0)).dot(convexHull.face[j].N());
if (dist > 0)
{
listVertexPerFace[j].push_back(&mesh.vert[i]);
if (dist > furthestVexterPerFace[j].second)
{
furthestVexterPerFace[j].second = dist;
furthestVexterPerFace[j].first = &mesh.vert[i];
}
}
}
}
//Build list of visible vertices for each convex hull face and find the furthest vertex for each face
std::vector<std::vector<InputVertexPointer>> listVertexPerFace(convexHull.face.size());
std::vector<Pair> furthestVexterPerFace(convexHull.face.size(), std::make_pair((InputVertexPointer)NULL, 0.0f));
for (int i = 0; i < mesh.vert.size(); i++)
{
ScalarType maxDist = 0;
for (int j = 0; j < convexHull.face.size(); j++)
{
ScalarType dist = (mesh.vert[i].P() - convexHull.face[j].P(0)).dot(convexHull.face[j].N());
if (dist > 0)
{
listVertexPerFace[j].push_back(&mesh.vert[i]);
if (dist > furthestVexterPerFace[j].second)
{
furthestVexterPerFace[j].second = dist;
furthestVexterPerFace[j].first = &mesh.vert[i];
}
}
}
}
for (int i = 0; i < listVertexPerFace.size(); i++)
{
if (listVertexPerFace[i].size() > 0)
{
//Find faces to remove and face on the border where to connect the new fan faces
InputVertexPointer vertex = furthestVexterPerFace[i].first;
std::queue<int> queue;
std::vector<int> visFace;
std::vector<int> borderFace;
visFace.push_back(i);
queue.push(i);
while (queue.size() > 0)
{
CHFacePointer fp = &convexHull.face[queue.front()];
queue.pop();
fp->SetV();
for (int ii = 0; ii < 3; ii++)
{
CHFacePointer nextF = fp->FFp(ii);
if (!nextF->IsV())
{
int indexF = vcg::tri::Index(convexHull, nextF);
ScalarType dist = (vertex->P() - nextF->P(0)).dot(nextF->N());
if (dist < 0)
{
borderFace.push_back(indexF);
fp->SetB(ii);
nextF->SetB(fp->FFi(ii));
}
else
{
visFace.push_back(indexF);
queue.push(indexF);
}
}
}
}
if (borderFace.size() > 0)
{
CHVertexIterator vi = vcg::tri::Allocator<CHMesh>::AddVertices(convexHull, 1);
(*vi).P().Import((*vertex).P());
indexInputVertex[vi] = vcg::tri::Index(mesh, vertex);
}
for (int i = 0; i < listVertexPerFace.size(); i++)
{
if (listVertexPerFace[i].size() > 0)
{
//Find faces to remove and face on the border where to connect the new fan faces
InputVertexPointer vertex = furthestVexterPerFace[i].first;
std::queue<int> queue;
std::vector<int> visFace;
std::vector<int> borderFace;
visFace.push_back(i);
queue.push(i);
while (queue.size() > 0)
{
CHFacePointer fp = &convexHull.face[queue.front()];
queue.pop();
fp->SetV();
for (int ii = 0; ii < 3; ii++)
{
CHFacePointer nextF = fp->FFp(ii);
if (!nextF->IsV())
{
int indexF = vcg::tri::Index(convexHull, nextF);
ScalarType dist = (vertex->P() - nextF->P(0)).dot(nextF->N());
if (dist < 0)
{
borderFace.push_back(indexF);
fp->SetB(ii);
nextF->SetB(fp->FFi(ii));
}
else
{
visFace.push_back(indexF);
queue.push(indexF);
}
}
}
}
if (borderFace.size() > 0)
{
CHVertexIterator vi = vcg::tri::Allocator<CHMesh>::AddVertices(convexHull, 1);
(*vi).P().Import((*vertex).P());
indexInputVertex[vi] = vcg::tri::Index(mesh, vertex);
}
//Add a new face for each border
std::unordered_map< CHVertexPointer, std::pair<int, char> > fanMap;
for (int jj = 0; jj < borderFace.size(); jj++)
{
int indexFace = borderFace[jj];
CHFacePointer f = &convexHull.face[indexFace];
for (int j = 0; j < 3; j++)
{
if (f->IsB(j))
{
f->ClearB(j);
//Add new face
CHFaceIterator fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert.back(), f->V1(j), f->V0(j));
(*fi).N() = vcg::NormalizedTriangleNormal(*fi);
f = &convexHull.face[indexFace];
int newFace = vcg::tri::Index(convexHull, *fi);
//Update convex hull FF topology
CHVertexPointer vp[] = { f->V1(j), f->V0(j) };
for (int ii = 0; ii < 2; ii++)
{
int indexE = ii * 2;
std::unordered_map< CHVertexPointer, std::pair<int, char> >::iterator vIter = fanMap.find(vp[ii]);
if (vIter != fanMap.end())
{
CHFacePointer f2 = &convexHull.face[(*vIter).second.first];
char edgeIndex = (*vIter).second.second;
f2->FFp(edgeIndex) = &convexHull.face.back();
f2->FFi(edgeIndex) = indexE;
fi->FFp(indexE) = f2;
fi->FFi(indexE) = edgeIndex;
}
else
{
fanMap[vp[ii]] = std::make_pair(newFace, indexE);
}
}
//Build the visibility list for the new face
std::vector<InputVertexPointer> tempVect;
int indices[] = { indexFace, vcg::tri::Index(convexHull, f->FFp(j)) };
std::vector<InputVertexPointer> vertexToTest(listVertexPerFace[indices[0]].size() + listVertexPerFace[indices[1]].size());
std::vector<InputVertexPointer>::iterator tempIt = std::set_union(listVertexPerFace[indices[0]].begin(), listVertexPerFace[indices[0]].end(), listVertexPerFace[indices[1]].begin(), listVertexPerFace[indices[1]].end(), vertexToTest.begin());
vertexToTest.resize(tempIt - vertexToTest.begin());
ScalarType maxDist = 0;
Pair newInfo = std::make_pair((InputVertexPointer)NULL , 0.0f);
for (int ii = 0; ii < vertexToTest.size(); ii++)
{
float dist = ((*vertexToTest[ii]).P() - (*fi).P(0)).dot((*fi).N());
if (dist > 0)
{
tempVect.push_back(vertexToTest[ii]);
if (dist > newInfo.second)
{
newInfo.second = dist;
newInfo.first = vertexToTest[ii];
}
}
}
listVertexPerFace.push_back(tempVect);
furthestVexterPerFace.push_back(newInfo);
//Update topology of the new face
CHFacePointer ffp = f->FFp(j);
int ffi = f->FFi(j);
ffp->FFp(ffi) = ffp;
ffp->FFi(ffi) = ffi;
f->FFp(j) = &convexHull.face.back();
f->FFi(j) = 1;
fi->FFp(1) = f;
fi->FFi(1) = j;
}
}
}
//Delete the faces inside the updated convex hull
for (int j = 0; j < visFace.size(); j++)
{
if (!convexHull.face[visFace[j]].IsD())
{
vcg::tri::Allocator<CHMesh>::DeleteFace(convexHull, convexHull.face[visFace[j]]);
listVertexPerFace[visFace[j]].swap(std::vector<InputVertexPointer>());
}
}
}
}
vcg::tri::Allocator<CHMesh>::CompactFaceVector(convexHull);
vcg::tri::Clean<CHMesh>::RemoveUnreferencedVertex(convexHull);
return true;
};
//Add a new face for each border
std::unordered_map< CHVertexPointer, std::pair<int, char> > fanMap;
for (int jj = 0; jj < borderFace.size(); jj++)
{
int indexFace = borderFace[jj];
CHFacePointer f = &convexHull.face[indexFace];
for (int j = 0; j < 3; j++)
{
if (f->IsB(j))
{
f->ClearB(j);
//Add new face
CHFaceIterator fi = vcg::tri::Allocator<CHMesh>::AddFace(convexHull, &convexHull.vert.back(), f->V1(j), f->V0(j));
(*fi).N() = vcg::NormalizedTriangleNormal(*fi);
f = &convexHull.face[indexFace];
int newFace = vcg::tri::Index(convexHull, *fi);
//Update convex hull FF topology
CHVertexPointer vp[] = { f->V1(j), f->V0(j) };
for (int ii = 0; ii < 2; ii++)
{
int indexE = ii * 2;
typename std::unordered_map< CHVertexPointer, std::pair<int, char> >::iterator vIter = fanMap.find(vp[ii]);
if (vIter != fanMap.end())
{
CHFacePointer f2 = &convexHull.face[(*vIter).second.first];
char edgeIndex = (*vIter).second.second;
f2->FFp(edgeIndex) = &convexHull.face.back();
f2->FFi(edgeIndex) = indexE;
fi->FFp(indexE) = f2;
fi->FFi(indexE) = edgeIndex;
}
else
{
fanMap[vp[ii]] = std::make_pair(newFace, indexE);
}
}
//Build the visibility list for the new face
std::vector<InputVertexPointer> tempVect;
int indices[2] = { indexFace, int(vcg::tri::Index(convexHull, f->FFp(j)) )};
std::vector<InputVertexPointer> vertexToTest(listVertexPerFace[indices[0]].size() + listVertexPerFace[indices[1]].size());
typename std::vector<InputVertexPointer>::iterator tempIt = std::set_union(listVertexPerFace[indices[0]].begin(), listVertexPerFace[indices[0]].end(), listVertexPerFace[indices[1]].begin(), listVertexPerFace[indices[1]].end(), vertexToTest.begin());
vertexToTest.resize(tempIt - vertexToTest.begin());
ScalarType maxDist = 0;
Pair newInfo = std::make_pair((InputVertexPointer)NULL , 0.0f);
for (int ii = 0; ii < vertexToTest.size(); ii++)
{
float dist = ((*vertexToTest[ii]).P() - (*fi).P(0)).dot((*fi).N());
if (dist > 0)
{
tempVect.push_back(vertexToTest[ii]);
if (dist > newInfo.second)
{
newInfo.second = dist;
newInfo.first = vertexToTest[ii];
}
}
}
listVertexPerFace.push_back(tempVect);
furthestVexterPerFace.push_back(newInfo);
//Update topology of the new face
CHFacePointer ffp = f->FFp(j);
int ffi = f->FFi(j);
ffp->FFp(ffi) = ffp;
ffp->FFi(ffi) = ffi;
f->FFp(j) = &convexHull.face.back();
f->FFi(j) = 1;
fi->FFp(1) = f;
fi->FFi(1) = j;
}
}
}
//Delete the faces inside the updated convex hull
for (int j = 0; j < visFace.size(); j++)
{
if (!convexHull.face[visFace[j]].IsD())
{
std::vector<InputVertexPointer> emptyVec;
vcg::tri::Allocator<CHMesh>::DeleteFace(convexHull, convexHull.face[visFace[j]]);
listVertexPerFace[visFace[j]].swap(emptyVec);
}
}
}
}
tri::UpdateTopology<CHMesh>::ClearFaceFace(convexHull);
vcg::tri::Allocator<CHMesh>::CompactFaceVector(convexHull);
vcg::tri::Clean<CHMesh>::RemoveUnreferencedVertex(convexHull);
return true;
}
};