added NextNotFaux function
This commit is contained in:
parent
4fe40ecef5
commit
c3beef6091
|
@ -44,10 +44,10 @@ template <class FaceType>
|
|||
bool IsManifold(FaceType const & f, const int j );
|
||||
|
||||
/** Templated over the class face, it stores a \em position over a face in a mesh.
|
||||
It contain a pointer to the current face,
|
||||
the index of one edge and a pointer to one of the vertices of the edge.
|
||||
See also the JumpingPos in jumping_pos.h for an iterator that loops
|
||||
around the faces of a vertex without requiring the VF topology.
|
||||
It contain a pointer to the current face,
|
||||
the index of one edge and a pointer to one of the vertices of the edge.
|
||||
See also the JumpingPos in jumping_pos.h for an iterator that loops
|
||||
around the faces of a vertex without requiring the VF topology.
|
||||
*/
|
||||
|
||||
|
||||
|
@ -56,266 +56,293 @@ class Pos
|
|||
{
|
||||
public:
|
||||
|
||||
/// The vertex type
|
||||
typedef typename FaceType::VertexType VertexType;
|
||||
///The Pos type
|
||||
typedef Pos<FaceType> PosType;
|
||||
/// The scalar type
|
||||
typedef typename VertexType::ScalarType ScalarType;
|
||||
/// The vertex type
|
||||
typedef typename FaceType::VertexType VertexType;
|
||||
///The Pos type
|
||||
typedef Pos<FaceType> PosType;
|
||||
/// The scalar type
|
||||
typedef typename VertexType::ScalarType ScalarType;
|
||||
|
||||
/// Pointer to the face of the half-edge
|
||||
typename FaceType::FaceType *f;
|
||||
/// Index of the edge
|
||||
int z;
|
||||
/// Pointer to the vertex
|
||||
VertexType *v;
|
||||
/// Pointer to the face of the half-edge
|
||||
typename FaceType::FaceType *f;
|
||||
/// Index of the edge
|
||||
int z;
|
||||
/// Pointer to the vertex
|
||||
VertexType *v;
|
||||
|
||||
/// Default constructor
|
||||
Pos() : f(0), z(-1), v(0) {}
|
||||
/// Constructor which associates the half-edge element with a face, its edge and its vertex
|
||||
/// \note that the input must be consistent, e.g. it should hold that \c vp==fp->V0(zp) or \c vp==fp->V1(zp)
|
||||
Pos(FaceType * const fp, int const zp, VertexType * const vp)
|
||||
{
|
||||
f=fp; z=zp; v=vp;
|
||||
assert((vp==fp->V0(zp))||(vp==fp->V1(zp)));
|
||||
}
|
||||
Pos(FaceType * const fp, int const zp){f=fp; z=zp; v=f->V(zp);}
|
||||
Pos(FaceType * const fp, VertexType * const vp)
|
||||
{
|
||||
f = fp;
|
||||
v = vp;
|
||||
for(int i = 0; i < f->VN(); ++i)
|
||||
if (f->V(i) == v) { z = f->Prev(i); break;}
|
||||
}
|
||||
/// Default constructor
|
||||
Pos() : f(0), z(-1), v(0) {}
|
||||
/// Constructor which associates the half-edge element with a face, its edge and its vertex
|
||||
/// \note that the input must be consistent, e.g. it should hold that \c vp==fp->V0(zp) or \c vp==fp->V1(zp)
|
||||
Pos(FaceType * const fp, int const zp, VertexType * const vp)
|
||||
{
|
||||
f=fp; z=zp; v=vp;
|
||||
assert((vp==fp->V0(zp))||(vp==fp->V1(zp)));
|
||||
}
|
||||
Pos(FaceType * const fp, int const zp){f=fp; z=zp; v=f->V(zp);}
|
||||
Pos(FaceType * const fp, VertexType * const vp)
|
||||
{
|
||||
f = fp;
|
||||
v = vp;
|
||||
for(int i = 0; i < f->VN(); ++i)
|
||||
if (f->V(i) == v) { z = f->Prev(i); break;}
|
||||
}
|
||||
|
||||
// Official Access functions functions
|
||||
VertexType *& V(){ return v; }
|
||||
int & E(){ return z; }
|
||||
FaceType *& F(){ return f; }
|
||||
VertexType *& V(){ return v; }
|
||||
int & E(){ return z; }
|
||||
FaceType *& F(){ return f; }
|
||||
|
||||
VertexType * V() const { return v; }
|
||||
int E() const { return z; }
|
||||
FaceType * F() const { return f; }
|
||||
VertexType * V() const { return v; }
|
||||
int E() const { return z; }
|
||||
FaceType * F() const { return f; }
|
||||
|
||||
// Returns the face index of the vertex inside the face.
|
||||
// Note that this is DIFFERENT from using the z member that denotes the edge index inside the face.
|
||||
// It should holds that Vind != (z+1)%3 && Vind == z || Vind = z+2%3
|
||||
int VInd()
|
||||
{
|
||||
for(int i = 0; i < f->VN(); ++i) if(v==f->V(i)) return i;
|
||||
assert(0);
|
||||
return -1;
|
||||
}
|
||||
// Returns the face index of the vertex inside the face.
|
||||
// Note that this is DIFFERENT from using the z member that denotes the edge index inside the face.
|
||||
// It should holds that Vind != (z+1)%3 && Vind == z || Vind = z+2%3
|
||||
int VInd()
|
||||
{
|
||||
for(int i = 0; i < f->VN(); ++i) if(v==f->V(i)) return i;
|
||||
assert(0);
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
/// Operator to compare two half-edge
|
||||
inline bool operator == ( PosType const & p ) const {
|
||||
return (f==p.f && z==p.z && v==p.v);
|
||||
}
|
||||
/// Operator to compare two half-edge
|
||||
inline bool operator == ( PosType const & p ) const {
|
||||
return (f==p.f && z==p.z && v==p.v);
|
||||
}
|
||||
|
||||
/// Operator to compare two half-edge
|
||||
inline bool operator != ( PosType const & p ) const {
|
||||
return (f!=p.f || z!=p.z || v!=p.v);
|
||||
}
|
||||
/// Operator to order half-edge; it's compare at the first the face pointers, then the index of the edge and finally the vertex pointers
|
||||
inline bool operator <= ( PosType const & p) const {
|
||||
return (f!=p.f)?(f<p.f):
|
||||
(z!=p.z)?(z<p.z):
|
||||
(v<=p.v);
|
||||
}
|
||||
/// Operator to compare two half-edge
|
||||
inline bool operator != ( PosType const & p ) const {
|
||||
return (f!=p.f || z!=p.z || v!=p.v);
|
||||
}
|
||||
/// Operator to order half-edge; it's compare at the first the face pointers, then the index of the edge and finally the vertex pointers
|
||||
inline bool operator <= ( PosType const & p) const {
|
||||
return (f!=p.f)?(f<p.f):
|
||||
(z!=p.z)?(z<p.z):
|
||||
(v<=p.v);
|
||||
}
|
||||
|
||||
/// Assignment operator
|
||||
inline PosType & operator = ( const PosType & h ){
|
||||
f=h.f;
|
||||
z=h.z;
|
||||
v=h.v;
|
||||
return *this;
|
||||
}
|
||||
/// Assignment operator
|
||||
inline PosType & operator = ( const PosType & h ){
|
||||
f=h.f;
|
||||
z=h.z;
|
||||
v=h.v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// Set to null the half-edge
|
||||
void SetNull(){
|
||||
f=0;
|
||||
v=0;
|
||||
z=-1;
|
||||
}
|
||||
/// Check if the half-edge is null
|
||||
bool IsNull() const {
|
||||
return f==0 || v==0 || z<0;
|
||||
}
|
||||
/// Set to null the half-edge
|
||||
void SetNull(){
|
||||
f=0;
|
||||
v=0;
|
||||
z=-1;
|
||||
}
|
||||
/// Check if the half-edge is null
|
||||
bool IsNull() const {
|
||||
return f==0 || v==0 || z<0;
|
||||
}
|
||||
|
||||
//Cambia Faccia lungo z
|
||||
// e' uguale a FlipF solo che funziona anche per non manifold.
|
||||
/// Change face via z
|
||||
void NextF()
|
||||
{
|
||||
FaceType * t = f;
|
||||
f = t->FFp(z);
|
||||
z = t->FFi(z);
|
||||
}
|
||||
//Cambia Faccia lungo z
|
||||
// e' uguale a FlipF solo che funziona anche per non manifold.
|
||||
/// Change face via z
|
||||
void NextF()
|
||||
{
|
||||
FaceType * t = f;
|
||||
f = t->FFp(z);
|
||||
z = t->FFi(z);
|
||||
}
|
||||
|
||||
// Paolo Cignoni 19/6/99
|
||||
// Si muove sulla faccia adiacente a f, lungo uno spigolo che
|
||||
// NON e' j, e che e' adiacente a v
|
||||
// in questo modo si scandiscono tutte le facce incidenti in un
|
||||
// vertice f facendo Next() finche' non si ritorna all'inizio
|
||||
// Nota che sul bordo rimbalza, cioe' se lo spigolo !=j e' di bordo
|
||||
// restituisce sempre la faccia f ma con nj che e' il nuovo spigolo di bordo
|
||||
// vecchi parametri: FaceType * & f, VertexType * v, int & j
|
||||
// Paolo Cignoni 19/6/99
|
||||
// Si muove sulla faccia adiacente a f, lungo uno spigolo che
|
||||
// NON e' j, e che e' adiacente a v
|
||||
// in questo modo si scandiscono tutte le facce incidenti in un
|
||||
// vertice f facendo Next() finche' non si ritorna all'inizio
|
||||
// Nota che sul bordo rimbalza, cioe' se lo spigolo !=j e' di bordo
|
||||
// restituisce sempre la faccia f ma con nj che e' il nuovo spigolo di bordo
|
||||
// vecchi parametri: FaceType * & f, VertexType * v, int & j
|
||||
|
||||
/// It moves on the adjacent face incident to v, via a different edge that j
|
||||
void NextE()
|
||||
{
|
||||
assert( f->V(z)==v || f->V(f->Next(z))==v ); // L'edge j deve contenere v
|
||||
FlipE();
|
||||
FlipF();
|
||||
assert( f->V(z)==v || f->V(f->Next(z))==v );
|
||||
}
|
||||
// Cambia edge mantenendo la stessa faccia e lo stesso vertice
|
||||
/// Changes edge maintaining the same face and the same vertex
|
||||
void FlipE()
|
||||
{
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z+0)%f->VN())==v));
|
||||
if(f->V(f->Next(z))==v) z=f->Next(z);
|
||||
else z= f->Prev(z);
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z))==v));
|
||||
}
|
||||
/// It moves on the adjacent face incident to v, via a different edge that j
|
||||
void NextE()
|
||||
{
|
||||
assert( f->V(z)==v || f->V(f->Next(z))==v ); // L'edge j deve contenere v
|
||||
FlipE();
|
||||
FlipF();
|
||||
assert( f->V(z)==v || f->V(f->Next(z))==v );
|
||||
}
|
||||
// Cambia edge mantenendo la stessa faccia e lo stesso vertice
|
||||
/// Changes edge maintaining the same face and the same vertex
|
||||
void FlipE()
|
||||
{
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z+0)%f->VN())==v));
|
||||
if(f->V(f->Next(z))==v) z=f->Next(z);
|
||||
else z= f->Prev(z);
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z))==v));
|
||||
}
|
||||
|
||||
// Cambia Faccia mantenendo lo stesso vertice e lo stesso edge
|
||||
// Vale che he.flipf.flipf= he
|
||||
// Se l'he e' di bordo he.flipf()==he
|
||||
// Si puo' usare SOLO se l'edge e' 2manifold altrimenti
|
||||
// si deve usare nextf
|
||||
// Cambia Faccia mantenendo lo stesso vertice e lo stesso edge
|
||||
// Vale che he.flipf.flipf= he
|
||||
// Se l'he e' di bordo he.flipf()==he
|
||||
// Si puo' usare SOLO se l'edge e' 2manifold altrimenti
|
||||
// si deve usare nextf
|
||||
|
||||
/// Changes face maintaining the same vertex and the same edge
|
||||
void FlipF()
|
||||
{
|
||||
assert( f->FFp(z)->FFp(f->FFi(z))==f ); // two manifoldness check
|
||||
// Check that pos vertex is one of the current z-th edge and it is different from the vert opposite to the edge.
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z))==v));
|
||||
FaceType *nf=f->FFp(z);
|
||||
int nz=f->FFi(z);
|
||||
assert(nf->V(nf->Prev(nz))!=v && (nf->V(nf->Next(nz))==v || nf->V((nz))==v));
|
||||
f=nf;
|
||||
z=nz;
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
}
|
||||
/// Changes face maintaining the same vertex and the same edge
|
||||
void FlipF()
|
||||
{
|
||||
assert( f->FFp(z)->FFp(f->FFi(z))==f ); // two manifoldness check
|
||||
// Check that pos vertex is one of the current z-th edge and it is different from the vert opposite to the edge.
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z))==v));
|
||||
FaceType *nf=f->FFp(z);
|
||||
int nz=f->FFi(z);
|
||||
assert(nf->V(nf->Prev(nz))!=v && (nf->V(nf->Next(nz))==v || nf->V((nz))==v));
|
||||
f=nf;
|
||||
z=nz;
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
}
|
||||
|
||||
/// Changes vertex maintaining the same face and the same edge
|
||||
void FlipV()
|
||||
{
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
/// Changes vertex maintaining the same face and the same edge
|
||||
void FlipV()
|
||||
{
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
|
||||
if(f->V(f->Next(z))==v)
|
||||
v=f->V(z);
|
||||
else
|
||||
v=f->V(f->Next(z));
|
||||
if(f->V(f->Next(z))==v)
|
||||
v=f->V(z);
|
||||
else
|
||||
v=f->V(f->Next(z));
|
||||
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
}
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
}
|
||||
|
||||
/// return the vertex that it should have if we make FlipV;
|
||||
/// return the vertex that it should have if we make FlipV;
|
||||
VertexType *VFlip() const
|
||||
{
|
||||
assert(f->cV(f->Prev(z))!=v && (f->cV(f->Next(z))==v || f->cV(z)==v));
|
||||
if(f->cV(f->Next(z))==v) return f->cV(z);
|
||||
else return f->cV(f->Next(z));
|
||||
else return f->cV(f->Next(z));
|
||||
}
|
||||
|
||||
/// return the face that it should have if we make FlipF;
|
||||
/// return the face that it should have if we make FlipF;
|
||||
FaceType *FFlip() const
|
||||
{
|
||||
// assert( f->FFp(z)->FFp(f->FFi(z))==f );
|
||||
// assert(f->V(f->Prev(z))!=v);
|
||||
// assert(f->V(f->Next(z))==v || f->V((z+0)%f->VN())==v);
|
||||
// assert( f->FFp(z)->FFp(f->FFi(z))==f );
|
||||
// assert(f->V(f->Prev(z))!=v);
|
||||
// assert(f->V(f->Next(z))==v || f->V((z+0)%f->VN())==v);
|
||||
FaceType *nf=f->FFp(z);
|
||||
return nf;
|
||||
}
|
||||
|
||||
|
||||
// Trova il prossimo half-edge di bordo (nhe)
|
||||
// tale che
|
||||
// --nhe.f adiacente per vertice a he.f
|
||||
// --nhe.v adiacente per edge di bordo a he.v
|
||||
// l'idea e' che se he e' un half edge di bordo
|
||||
// si puo scorrere tutto un bordo facendo
|
||||
//
|
||||
// hei=he;
|
||||
// do
|
||||
// hei.Nextb()
|
||||
// while(hei!=he);
|
||||
|
||||
/// Finds the next half-edge border
|
||||
void NextB( )
|
||||
{
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
assert(f->FFp(z)==f); // f is border along j
|
||||
// Si deve cambiare faccia intorno allo stesso vertice v
|
||||
//finche' non si trova una faccia di bordo.
|
||||
do
|
||||
NextE();
|
||||
while(!IsBorder());
|
||||
|
||||
// L'edge j e' di bordo e deve contenere v
|
||||
assert(IsBorder() &&( f->V(z)==v || f->V(f->Next(z))==v ));
|
||||
|
||||
FlipV();
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
assert(f->FFp(z)==f); // f is border along j
|
||||
}
|
||||
|
||||
/// Checks if the half-edge is of border
|
||||
bool IsBorder()
|
||||
{
|
||||
return face::IsBorder(*f,z);
|
||||
}
|
||||
|
||||
bool IsManifold()
|
||||
{
|
||||
return face::IsManifold(*f,z);
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the number of vertices incident on the vertex pos is currently pointing to.
|
||||
*/
|
||||
int NumberOfIncidentVertices()
|
||||
{
|
||||
int count = 0;
|
||||
bool on_border = false;
|
||||
CheckIncidentFaces(count, on_border);
|
||||
if(on_border) return (count/2)+1;
|
||||
else return count;
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the number of faces incident on the vertex pos is currently pointing to.
|
||||
*/
|
||||
int NumberOfIncidentFaces()
|
||||
{
|
||||
int count = 0;
|
||||
bool on_border = false;
|
||||
CheckIncidentFaces(count, on_border);
|
||||
if(on_border) return count/2;
|
||||
else return count;
|
||||
}
|
||||
// Trova il prossimo half-edge di bordo (nhe)
|
||||
// tale che
|
||||
// --nhe.f adiacente per vertice a he.f
|
||||
// --nhe.v adiacente per edge di bordo a he.v
|
||||
// l'idea e' che se he e' un half edge di bordo
|
||||
// si puo scorrere tutto un bordo facendo
|
||||
//
|
||||
// hei=he;
|
||||
// do
|
||||
// hei.Nextb()
|
||||
// while(hei!=he);
|
||||
|
||||
/// Finds the next half-edge border
|
||||
void NextB( )
|
||||
{
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
assert(f->FFp(z)==f); // f is border along j
|
||||
// Si deve cambiare faccia intorno allo stesso vertice v
|
||||
//finche' non si trova una faccia di bordo.
|
||||
do
|
||||
NextE();
|
||||
while(!IsBorder());
|
||||
|
||||
// L'edge j e' di bordo e deve contenere v
|
||||
assert(IsBorder() &&( f->V(z)==v || f->V(f->Next(z))==v ));
|
||||
|
||||
FlipV();
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
assert(f->FFp(z)==f); // f is border along j
|
||||
}
|
||||
|
||||
/// Finds the next half-edge border
|
||||
void NextNotFaux( )
|
||||
{
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
//assert(f->FFp(z)==f); // f is border along j
|
||||
// Si deve cambiare faccia intorno allo stesso vertice v
|
||||
//finche' non si trova una faccia di bordo.
|
||||
do
|
||||
{
|
||||
FlipE();
|
||||
if (IsFaux()) FlipF();
|
||||
}
|
||||
while(IsFaux());
|
||||
|
||||
// L'edge j e' di bordo e deve contenere v
|
||||
assert((!IsFaux()) &&( f->V(z)==v || f->V(f->Next(z))==v ));
|
||||
|
||||
FlipV();
|
||||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
//assert(f->FFp(z)==f); // f is border along j
|
||||
}
|
||||
|
||||
/// Checks if the half-edge is of border
|
||||
bool IsBorder()
|
||||
{
|
||||
return face::IsBorder(*f,z);
|
||||
}
|
||||
|
||||
bool IsFaux()
|
||||
{
|
||||
return (f->IsF(z));
|
||||
}
|
||||
|
||||
bool IsManifold()
|
||||
{
|
||||
return face::IsManifold(*f,z);
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the number of vertices incident on the vertex pos is currently pointing to.
|
||||
*/
|
||||
int NumberOfIncidentVertices()
|
||||
{
|
||||
int count = 0;
|
||||
bool on_border = false;
|
||||
CheckIncidentFaces(count, on_border);
|
||||
if(on_border) return (count/2)+1;
|
||||
else return count;
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the number of faces incident on the vertex pos is currently pointing to.
|
||||
*/
|
||||
int NumberOfIncidentFaces()
|
||||
{
|
||||
int count = 0;
|
||||
bool on_border = false;
|
||||
CheckIncidentFaces(count, on_border);
|
||||
if(on_border) return count/2;
|
||||
else return count;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
/*!
|
||||
* Returns the number of faces incident on the edge the pos is currently pointing to.
|
||||
* useful to compute the complexity of a non manifold edge
|
||||
*/
|
||||
int NumberOfFacesOnEdge() const
|
||||
{
|
||||
int count = 0;
|
||||
PosType ht = *this;
|
||||
do
|
||||
int NumberOfFacesOnEdge() const
|
||||
{
|
||||
ht.NextF();
|
||||
++count;
|
||||
int count = 0;
|
||||
PosType ht = *this;
|
||||
do
|
||||
{
|
||||
ht.NextF();
|
||||
++count;
|
||||
}
|
||||
while (ht!=*this);
|
||||
return count;
|
||||
}
|
||||
while (ht!=*this);
|
||||
return count;
|
||||
}
|
||||
/** Function to inizialize an half-edge.
|
||||
@param fp Puntatore alla faccia
|
||||
@param zp Indice dell'edge
|
||||
|
@ -327,45 +354,45 @@ public:
|
|||
assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v));
|
||||
}
|
||||
|
||||
void Set(FaceType * const pFace, VertexType * const pVertex)
|
||||
{
|
||||
f = pFace;
|
||||
v = pVertex;
|
||||
for(int i = 0; i < f->VN(); ++i) if(f->V(i) == v ) {z = f->Prev(i);break;}
|
||||
}
|
||||
void Set(FaceType * const pFace, VertexType * const pVertex)
|
||||
{
|
||||
f = pFace;
|
||||
v = pVertex;
|
||||
for(int i = 0; i < f->VN(); ++i) if(f->V(i) == v ) {z = f->Prev(i);break;}
|
||||
}
|
||||
|
||||
void Assert()
|
||||
#ifdef _DEBUG
|
||||
{
|
||||
FaceType ht=*this;
|
||||
ht.FlipF();
|
||||
ht.FlipF();
|
||||
assert(ht==*this);
|
||||
void Assert()
|
||||
#ifdef _DEBUG
|
||||
{
|
||||
FaceType ht=*this;
|
||||
ht.FlipF();
|
||||
ht.FlipF();
|
||||
assert(ht==*this);
|
||||
|
||||
ht.FlipE();
|
||||
ht.FlipE();
|
||||
assert(ht==*this);
|
||||
ht.FlipE();
|
||||
ht.FlipE();
|
||||
assert(ht==*this);
|
||||
|
||||
ht.FlipV();
|
||||
ht.FlipV();
|
||||
assert(ht==*this);
|
||||
}
|
||||
#else
|
||||
{}
|
||||
#endif
|
||||
ht.FlipV();
|
||||
ht.FlipV();
|
||||
assert(ht==*this);
|
||||
}
|
||||
#else
|
||||
{}
|
||||
#endif
|
||||
|
||||
|
||||
protected:
|
||||
void CheckIncidentFaces(int & count, bool & on_border)
|
||||
{
|
||||
PosType ht = *this;
|
||||
do
|
||||
{
|
||||
++count;
|
||||
ht.NextE();
|
||||
if(ht.IsBorder()) on_border=true;
|
||||
} while (ht != *this);
|
||||
}
|
||||
protected:
|
||||
void CheckIncidentFaces(int & count, bool & on_border)
|
||||
{
|
||||
PosType ht = *this;
|
||||
do
|
||||
{
|
||||
++count;
|
||||
ht.NextE();
|
||||
if(ht.IsBorder()) on_border=true;
|
||||
} while (ht != *this);
|
||||
}
|
||||
};
|
||||
|
||||
/** Class VFIterator.
|
||||
|
@ -382,15 +409,15 @@ public:
|
|||
|
||||
// Alternative
|
||||
|
||||
vcg::face::VFIterator<FaceType> vfi(f, 1);
|
||||
while (!vfi.End()){
|
||||
vfi.F()->ClearV();
|
||||
++vfi;
|
||||
}
|
||||
vcg::face::VFIterator<FaceType> vfi(f, 1);
|
||||
while (!vfi.End()){
|
||||
vfi.F()->ClearV();
|
||||
++vfi;
|
||||
}
|
||||
|
||||
|
||||
See also the JumpingPos in jumping_pos.h for an iterator that loops
|
||||
around the faces of a vertex using FF topology and without requiring the VF topology.
|
||||
See also the JumpingPos in jumping_pos.h for an iterator that loops
|
||||
around the faces of a vertex using FF topology and without requiring the VF topology.
|
||||
|
||||
*/
|
||||
|
||||
|
@ -399,45 +426,45 @@ class VFIterator
|
|||
{
|
||||
public:
|
||||
|
||||
/// The vertex type
|
||||
typedef typename FaceType::VertexType VertexType;
|
||||
/// The Base face type
|
||||
typedef FaceType VFIFaceType;
|
||||
/// The vector type
|
||||
typedef typename VertexType::CoordType CoordType;
|
||||
/// The scalar type
|
||||
typedef typename VertexType::ScalarType ScalarType;
|
||||
/// The vertex type
|
||||
typedef typename FaceType::VertexType VertexType;
|
||||
/// The Base face type
|
||||
typedef FaceType VFIFaceType;
|
||||
/// The vector type
|
||||
typedef typename VertexType::CoordType CoordType;
|
||||
/// The scalar type
|
||||
typedef typename VertexType::ScalarType ScalarType;
|
||||
|
||||
/// Pointer to the face of the half-edge
|
||||
FaceType *f;
|
||||
/// Index of the vertex
|
||||
int z;
|
||||
/// Pointer to the face of the half-edge
|
||||
FaceType *f;
|
||||
/// Index of the vertex
|
||||
int z;
|
||||
|
||||
/// Default constructor
|
||||
VFIterator() : f(0), z(-1) {}
|
||||
/// Constructor which associates the half-edge elementet with a face and its vertex
|
||||
VFIterator(FaceType * _f, const int & _z){f = _f; z = _z; assert(z>=0 && "VFAdj must be initialized");}
|
||||
/// Default constructor
|
||||
VFIterator() : f(0), z(-1) {}
|
||||
/// Constructor which associates the half-edge elementet with a face and its vertex
|
||||
VFIterator(FaceType * _f, const int & _z){f = _f; z = _z; assert(z>=0 && "VFAdj must be initialized");}
|
||||
|
||||
/// Constructor which takes a pointer to vertex
|
||||
VFIterator(VertexType * _v){f = _v->VFp(); z = _v->VFi(); assert(z>=0 && "VFAdj must be initialized");}
|
||||
/// Constructor which takes a pointer to vertex
|
||||
VFIterator(VertexType * _v){f = _v->VFp(); z = _v->VFi(); assert(z>=0 && "VFAdj must be initialized");}
|
||||
|
||||
VFIFaceType *& F() { return f;}
|
||||
int & I() { return z;}
|
||||
VFIFaceType *& F() { return f;}
|
||||
int & I() { return z;}
|
||||
|
||||
// Access to the vertex. Having a VFIterator vfi, it corresponds to
|
||||
// vfi.V() = vfi.F()->V(vfi.I())
|
||||
inline VertexType *V() const { return f->V(z);}
|
||||
// Access to the vertex. Having a VFIterator vfi, it corresponds to
|
||||
// vfi.V() = vfi.F()->V(vfi.I())
|
||||
inline VertexType *V() const { return f->V(z);}
|
||||
|
||||
inline VertexType * const & V0() const { return f->V0(z);}
|
||||
inline VertexType * const & V1() const { return f->V1(z);}
|
||||
inline VertexType * const & V2() const { return f->V2(z);}
|
||||
inline VertexType * const & V0() const { return f->V0(z);}
|
||||
inline VertexType * const & V1() const { return f->V1(z);}
|
||||
inline VertexType * const & V2() const { return f->V2(z);}
|
||||
|
||||
bool End() const {return f==0;}
|
||||
void operator++() {
|
||||
FaceType* t = f;
|
||||
bool End() const {return f==0;}
|
||||
void operator++() {
|
||||
FaceType* t = f;
|
||||
f = t->VFp(z);
|
||||
z = t->VFi(z);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
|
Loading…
Reference in New Issue