first templated version of the ransac framework
This commit is contained in:
parent
c516493c7e
commit
de041d732b
|
@ -0,0 +1,444 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2004-2012 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
|
||||
#ifndef RANSAC_MATCHING_H
|
||||
#define RANSAC_MATCHING_H
|
||||
#include<vcg/complex/algorithms/point_sampling.h>
|
||||
#include<vcg/complex/algorithms/ransac_matching.h>
|
||||
#include<vcg/space/index/kdtree/kdtree.h>
|
||||
#include<vcg/space/point_matching.h>
|
||||
namespace vcg
|
||||
{
|
||||
|
||||
|
||||
template <class MeshType>
|
||||
class BaseFeature
|
||||
{
|
||||
public:
|
||||
BaseFeature():_v(0) {}
|
||||
typename MeshType::VertexType *_v;
|
||||
typename MeshType::CoordType P() {return _v->cP();}
|
||||
};
|
||||
template <class MeshType>
|
||||
class BaseFeatureSet
|
||||
{
|
||||
public:
|
||||
typedef BaseFeature<MeshType> FeatureType;
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
|
||||
std::vector<FeatureType> fixFeatureVec;
|
||||
std::vector<FeatureType> movFeatureVec;
|
||||
|
||||
FeatureType &ff(int i) { return fixFeatureVec[i]; }
|
||||
FeatureType &mf(int i) { return movFeatureVec[i]; }
|
||||
int ffNum() const { return fixFeatureVec.size(); }
|
||||
|
||||
void Init(MeshType &fix, MeshType &mov,
|
||||
std::vector<VertexType *> &fixSampleVec, std::vector<VertexType *> &movSampleVec)
|
||||
{
|
||||
this->fixFeatureVec.resize(fixSampleVec.size()/20);
|
||||
for(int i=0;i<fixSampleVec.size()/20;++i)
|
||||
this->fixFeatureVec[i]._v = fixSampleVec[i];
|
||||
|
||||
this->movFeatureVec.resize(movSampleVec.size()/20);
|
||||
for(int i=0;i<movSampleVec.size()/20;++i)
|
||||
this->movFeatureVec[i]._v = movSampleVec[i];
|
||||
|
||||
printf("Generated %i Features on Fix\n",this->fixFeatureVec.size());
|
||||
printf("Generated %i Features on Mov\n",this->movFeatureVec.size());
|
||||
}
|
||||
|
||||
// Returns the indexes of all the fix features matching a given one (from mov usually)
|
||||
void getMatchingFeatureVec(FeatureType &q, vector<int> &mfiVec)
|
||||
{
|
||||
mfiVec.resize(movFeatureVec.size());
|
||||
|
||||
for(int i=0;i<movFeatureVec.size();++i)
|
||||
mfiVec[i]=i;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <class MeshType>
|
||||
class NDFeature
|
||||
{
|
||||
public:
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
|
||||
typename MeshType::VertexType *_v;
|
||||
typename MeshType::CoordType nd; //
|
||||
|
||||
typename MeshType::CoordType P() {return _v->cP();}
|
||||
|
||||
static void EvalNormalVariation(MeshType &m, ScalarType dist)
|
||||
{
|
||||
tri::UpdateNormal<MeshType>::PerVertexNormalized(m);
|
||||
|
||||
VertexConstDataWrapper<MeshType > ww(m);
|
||||
KdTree<ScalarType> tree(ww);
|
||||
|
||||
for(int i=0;i<m.vn;++i)
|
||||
{
|
||||
std::vector<unsigned int> ptIndVec;
|
||||
std::vector<ScalarType> sqDistVec;
|
||||
tree.doQueryDist(m.vert[i].P(),dist, ptIndVec, sqDistVec);
|
||||
ScalarType varSum=0;
|
||||
for(int j=0;j<sqDistVec.size();++j)
|
||||
{
|
||||
varSum += Distance(m.vert[i].N(),m.vert[ptIndVec[j]].N());
|
||||
}
|
||||
m.vert[i].Q()=varSum/ScalarType(ptIndVec.size());
|
||||
}
|
||||
tri::UpdateColor<MeshType>::PerVertexQualityGray(m,0,0);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <class MeshType, class FeatureSetType>
|
||||
class RansacFramework
|
||||
{
|
||||
typedef typename FeatureSetType::FeatureType FeatureType;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::BoxType BoxType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::EdgeType EdgeType;
|
||||
typedef typename MeshType::EdgeIterator EdgeIterator;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FacePointer FacePointer;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
typedef typename MeshType::FaceContainer FaceContainer;
|
||||
typedef Matrix44<ScalarType> Matrix44Type;
|
||||
|
||||
public:
|
||||
class Param
|
||||
{
|
||||
public:
|
||||
Param()
|
||||
{
|
||||
iterMax=100;
|
||||
samplingRadiusPerc=0.005;
|
||||
samplingRadiusAbs=0;
|
||||
evalSize=1000;
|
||||
inlierRatioThr=0.3;
|
||||
inlierDistanceThrPerc = 1.5; // the distance between a transformed mov sample and the corresponding on fix should be 1.5 * sampling dist.
|
||||
congruenceThrPerc = 2.0; // the distance between two matching features must be within 2.0 * sampling distance
|
||||
minFeatureDistancePerc = 4.0; // the distance between two chosen features must be at least 4.0 * sampling distance
|
||||
}
|
||||
|
||||
ScalarType inlierRatioThr;
|
||||
ScalarType inlierDistanceThrPerc;
|
||||
ScalarType congruenceThrPerc;
|
||||
ScalarType minFeatureDistancePerc;
|
||||
ScalarType samplingRadiusPerc;
|
||||
ScalarType samplingRadiusAbs;
|
||||
int iterMax;
|
||||
int evalSize;
|
||||
|
||||
ScalarType inlierSquareThr() const { return pow(samplingRadiusAbs* inlierDistanceThrPerc,2); }
|
||||
};
|
||||
|
||||
class Candidate
|
||||
{
|
||||
public:
|
||||
int fixInd[3];
|
||||
int movInd[3];
|
||||
int inlierNum;
|
||||
int evalSize;
|
||||
Matrix44Type Tr;
|
||||
ScalarType err() const {return float(inlierNum)/float(evalSize);}
|
||||
bool operator <(const Candidate &cc) const
|
||||
{
|
||||
return this->err() > cc.err();
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
FeatureSetType FS;
|
||||
std::vector<Point3f> fixConsensusVec, movConsensusVec;
|
||||
KdTree<ScalarType> *consensusTree;
|
||||
|
||||
|
||||
// Given three pairs of sufficiently different distances (e.g. the edges of a scalene triangle)
|
||||
// it finds the permutation that brings the vertexes so that the distances match.
|
||||
// The meaning of the permutation vector nm0,nm1,nm2 is that the (N)ew index of (M)ov vertx i is the value of nmi
|
||||
|
||||
bool FindPermutation(int d01, int d02, int d12, int m01, int m02, int m12, int nm[], Param &pp)
|
||||
{
|
||||
ScalarType eps = pp.samplingRadiusAbs*2.0;
|
||||
|
||||
if(fabs(d01-m01)<eps) {
|
||||
if(fabs(d02-m02)<eps) {
|
||||
if(fabs(d12-m12)<eps){ nm[0]=0;nm[1]=1;nm[2]=2; return true; }
|
||||
else return false;
|
||||
}
|
||||
if(fabs(d02-m12)<eps) {
|
||||
if(fabs(d12-m02)<eps){ nm[0]=1;nm[1]=0;nm[2]=2; return true; }
|
||||
else return false;
|
||||
}
|
||||
}
|
||||
|
||||
if(fabs(d01-m02)<eps) {
|
||||
if(fabs(d02-m01)<eps) {
|
||||
if(fabs(d12-m12)<eps){ nm[0]=0;nm[1]=2;nm[2]=1; return true; }
|
||||
else return false;
|
||||
}
|
||||
if(fabs(d02-m12)<eps) {
|
||||
if(fabs(d12-m01)<eps){ nm[0]=2;nm[1]=0;nm[2]=1; return true; }
|
||||
else return false;
|
||||
}
|
||||
}
|
||||
|
||||
if(fabs(d01-m12)<eps) {
|
||||
if(fabs(d02-m01)<eps) {
|
||||
if(fabs(d12-m02)<eps){ nm[0]=1;nm[1]=2;nm[2]=0; return true; }
|
||||
else return false;
|
||||
}
|
||||
if(fabs(d02-m02)<eps) {
|
||||
if(fabs(d12-m01)<eps){ nm[0]=2;nm[1]=1;nm[2]=0; return true; }
|
||||
else return false;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// The main loop.
|
||||
// Choose three points on fix that make a scalene triangle
|
||||
// and search on mov three other points with matchng distances
|
||||
|
||||
void Process_SearchEvaluateTriple (vector<Candidate> &cVec, Param &pp)
|
||||
{
|
||||
math::MarsenneTwisterRNG rnd;
|
||||
// ScalarType congruenceEps = pow(pp.samplingRadiusAbs * pp.congruenceThrPerc,2.0f);
|
||||
ScalarType congruenceEps = pp.samplingRadiusAbs * pp.congruenceThrPerc;
|
||||
ScalarType minFeatureDistEps = pp.samplingRadiusAbs * pp.minFeatureDistancePerc;
|
||||
printf("Starting search congruenceEps = samplingRadiusAbs * 3.0 = %6.2f \n",congruenceEps);
|
||||
int iterCnt=0;
|
||||
|
||||
while ( (iterCnt < pp.iterMax) && (cVec.size()<100) )
|
||||
{
|
||||
Candidate c;
|
||||
// Choose a random pair of features from fix
|
||||
c.fixInd[0] = rnd.generate(FS.ffNum());
|
||||
c.fixInd[1] = rnd.generate(FS.ffNum());
|
||||
ScalarType d01 = Distance(FS.ff(c.fixInd[0]).P(),FS.ff(c.fixInd[1]).P());
|
||||
if( d01 > minFeatureDistEps )
|
||||
{
|
||||
c.fixInd[2] = rnd.generate(FS.ffNum());
|
||||
ScalarType d02=Distance(FS.ff(c.fixInd[0]).P(),FS.ff(c.fixInd[2]).P());
|
||||
ScalarType d12=Distance(FS.ff(c.fixInd[1]).P(),FS.ff(c.fixInd[2]).P());
|
||||
|
||||
if( ( d02 > minFeatureDistEps ) && // Sample are sufficiently distant
|
||||
( d12 > minFeatureDistEps ) &&
|
||||
( fabs(d01-d02) > congruenceEps ) && // and they make a scalene triangle
|
||||
( fabs(d01-d12) > congruenceEps ) &&
|
||||
( fabs(d12-d02) > congruenceEps ) )
|
||||
{
|
||||
// Find a congruent triple on mov
|
||||
printf("Starting search of a [%i] congruent triple for %4i %4i %4i - %6.2f %6.2f %6.2f\n",iterCnt,c.fixInd[0],c.fixInd[1],c.fixInd[2],d01,d02,d12);
|
||||
// As a first Step we ask for three vectors of matching features;
|
||||
|
||||
std::vector<int> movFeatureVec0;
|
||||
FS.getMatchingFeatureVec(FS.ff(c.fixInd[0]), movFeatureVec0);
|
||||
std::vector<int> movFeatureVec1;
|
||||
FS.getMatchingFeatureVec(FS.ff(c.fixInd[1]), movFeatureVec1);
|
||||
std::vector<int> movFeatureVec2;
|
||||
FS.getMatchingFeatureVec(FS.ff(c.fixInd[2]), movFeatureVec2);
|
||||
|
||||
int congrNum=0;
|
||||
int congrGoodNum=0;
|
||||
for(int i=0;i<movFeatureVec0.size();++i)
|
||||
{
|
||||
if(cVec.size()>100) break;
|
||||
c.movInd[0]=movFeatureVec0[i];
|
||||
for(int j=0;j<movFeatureVec1.size();++j)
|
||||
{
|
||||
if(cVec.size()>100) break;
|
||||
c.movInd[1]=movFeatureVec1[j];
|
||||
ScalarType m01 = Distance(FS.mf(c.movInd[0]).P(),FS.mf(c.movInd[1]).P());
|
||||
if( (fabs(m01-d01)<congruenceEps) )
|
||||
{
|
||||
// printf("- Found a congruent pair %i %i %6.2f\n", c.movInd[0],c.movInd[1], m01);
|
||||
++congrNum;
|
||||
for(int k=0;k<movFeatureVec2.size();++k)
|
||||
{
|
||||
if(cVec.size()>100) break;
|
||||
c.movInd[2]=movFeatureVec2[k];
|
||||
ScalarType m02=Distance(FS.mf(c.movInd[0]).P(),FS.mf(c.movInd[2]).P());
|
||||
ScalarType m12=Distance(FS.mf(c.movInd[1]).P(),FS.mf(c.movInd[2]).P());
|
||||
if( (fabs(m02-d02)<congruenceEps) && (fabs(m12-d12)<congruenceEps ) )
|
||||
{
|
||||
c.Tr = GenerateMatchingMatrix(c,pp);
|
||||
|
||||
EvaluateMatrix(c,pp);
|
||||
if(c.err() > pp.inlierRatioThr ){
|
||||
printf("- - Found %i th good congruent triple %i %i %i -- %f / %i \n", cVec.size(), c.movInd[0],c.movInd[1],c.movInd[2],c.err(),pp.evalSize);
|
||||
++congrGoodNum;
|
||||
cVec.push_back(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("Completed Search of congruent triple (found %i / %i good/congruent)\n",congrGoodNum,congrNum);
|
||||
}
|
||||
}
|
||||
++iterCnt;
|
||||
} // end While
|
||||
|
||||
printf("Found %i candidates \n",cVec.size());
|
||||
sort(cVec.begin(),cVec.end());
|
||||
printf("best candidate %f \n",cVec[0].err());
|
||||
|
||||
pp.evalSize = pp.evalSize*10;
|
||||
|
||||
for(int i=0;i<cVec.size();++i)
|
||||
EvaluateMatrix(cVec[i],pp);
|
||||
|
||||
sort(cVec.begin(),cVec.end());
|
||||
|
||||
printf("After re-evaluation best is %f",cVec[0].err());
|
||||
|
||||
|
||||
|
||||
} // end Process
|
||||
|
||||
int EvaluateMatrix(Candidate &c, Param &pp)
|
||||
{
|
||||
c.inlierNum=0;
|
||||
c.evalSize=pp.evalSize;
|
||||
|
||||
ScalarType sqThr = pp.inlierSquareThr();
|
||||
Distribution<ScalarType> H;
|
||||
for(int i=0;i<pp.evalSize;++i)
|
||||
{
|
||||
Point3f qp = c.Tr*movConsensusVec[i];
|
||||
uint ind;
|
||||
ScalarType squareDist;
|
||||
consensusTree->doQueryClosest(qp,ind,squareDist);
|
||||
if(squareDist < sqThr)
|
||||
++c.inlierNum;
|
||||
}
|
||||
}
|
||||
|
||||
int DumpInlier(MeshType &m, Candidate &c, Param &pp)
|
||||
{
|
||||
ScalarType sqThr = pp.inlierSquareThr();
|
||||
for(int i=0;i<pp.evalSize;++i)
|
||||
{
|
||||
Point3f qp = c.Tr*movConsensusVec[i];
|
||||
uint ind;
|
||||
ScalarType squareDist;
|
||||
consensusTree->doQueryClosest(qp,ind,squareDist);
|
||||
if(squareDist < sqThr)
|
||||
tri::Allocator<MeshType>::AddVertex(m,qp);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
// Find the transformation that matches the mov onto the fix
|
||||
// eg M * piMov = piFix
|
||||
|
||||
Matrix44f GenerateMatchingMatrix(Candidate &c, Param pp)
|
||||
{
|
||||
std::vector<Point3f> pFix(3);
|
||||
pFix[0]= FS.ff(c.fixInd[0]).P();
|
||||
pFix[1]= FS.ff(c.fixInd[1]).P();
|
||||
pFix[2]= FS.ff(c.fixInd[2]).P();
|
||||
|
||||
std::vector<Point3f> pMov(3);
|
||||
pMov[0]= FS.mf(c.movInd[0]).P();
|
||||
pMov[1]= FS.mf(c.movInd[1]).P();
|
||||
pMov[2]= FS.mf(c.movInd[2]).P();
|
||||
|
||||
Point3f upFix = vcg::Normal(pFix[0],pFix[1],pFix[2]);
|
||||
Point3f upMov = vcg::Normal(pMov[0],pMov[1],pMov[2]);
|
||||
|
||||
upFix.Normalize();
|
||||
upMov.Normalize();
|
||||
|
||||
upFix *= Distance(pFix[0],pFix[1]);
|
||||
upMov *= Distance(pMov[0],pMov[1]);
|
||||
|
||||
for(int i=0;i<3;++i) pFix.push_back(pFix[i]+upFix);
|
||||
for(int i=0;i<3;++i) pMov.push_back(pMov[i]+upMov);
|
||||
|
||||
Matrix44f res;
|
||||
ComputeRigidMatchMatrix(pFix,pMov,res);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
void Init(MeshType &fixM, MeshType &movM, Param &pp)
|
||||
{
|
||||
// First a bit of Sampling
|
||||
typedef tri::TrivialPointerSampler<MeshType> BaseSampler;
|
||||
typename tri::SurfaceSampling<MeshType, BaseSampler>::PoissonDiskParam pdp;
|
||||
pdp.randomSeed = 0;
|
||||
pdp.bestSampleChoiceFlag = true;
|
||||
pdp.bestSamplePoolSize = 20;
|
||||
int t0=clock();
|
||||
pp.samplingRadiusAbs = pp.samplingRadiusPerc *fixM.bbox.Diag();
|
||||
BaseSampler pdSampler;
|
||||
std::vector<VertexType *> fixSampleVec;
|
||||
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, fixM, pp.samplingRadiusAbs,pdp);
|
||||
std::swap(pdSampler.sampleVec,fixSampleVec);
|
||||
std::vector<VertexType *> movSampleVec;
|
||||
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, movM, pp.samplingRadiusAbs,pdp);
|
||||
std::swap(pdSampler.sampleVec,movSampleVec);
|
||||
int t1=clock();
|
||||
printf("Poisson Sampling of surfaces %5.2f ( %iv and %iv) \n",float(t1-t0)/CLOCKS_PER_SEC,fixSampleVec.size(),movSampleVec.size());
|
||||
printf("Sampling Radius %f \n",pp.samplingRadiusAbs);
|
||||
|
||||
for(int i=0;i<fixSampleVec.size();++i)
|
||||
this->fixConsensusVec.push_back(fixSampleVec[i]->P());
|
||||
|
||||
for(int i=0;i<movSampleVec.size();++i)
|
||||
this->movConsensusVec.push_back(movSampleVec[i]->P());
|
||||
|
||||
FS.Init(fixM, movM, fixSampleVec, movSampleVec);
|
||||
|
||||
std::random_shuffle(movConsensusVec.begin(),movConsensusVec.end());
|
||||
|
||||
VectorConstDataWrapper<std::vector<CoordType> > ww(fixConsensusVec);
|
||||
consensusTree = new KdTree<ScalarType>(ww);
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
} //end namespace vcg
|
||||
|
||||
|
||||
#endif // RANSAC_MATCHING_H
|
Loading…
Reference in New Issue