vcglib/vcg/complex/algorithms/point_outlier.h

146 lines
6.2 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_TRI_OUTLIERS__H
#define VCG_TRI_OUTLIERS__H
#include <vcg/space/index/kdtree/kdtree.h>
namespace vcg
{
namespace tri
{
template <class MeshType>
class OutlierRemoval
{
public:
typedef typename MeshType::ScalarType ScalarType;
typedef typename vcg::KdTree<ScalarType> KdTreeType;
typedef typename vcg::KdTree<ScalarType>::PriorityQueue PriorityQueue;
/**
Compute an outlier probability value for each vertex of the mesh using the approch
in the paper "LoOP: Local Outlier Probabilities". The outlier probability is stored in the
vertex attribute "outlierScore". It use the input kdtree to find the kNearest of each vertex.
"LoOP: local outlier probabilities" by Hans-Peter Kriegel et al.
Proceedings of the 18th ACM conference on Information and knowledge management
*/
static void ComputeLoOPScore(MeshType& mesh, KdTreeType& kdTree, int kNearest)
{
vcg::tri::RequireCompactness(mesh);
typename MeshType::template PerVertexAttributeHandle<ScalarType> outlierScore = tri::Allocator<MeshType>:: template GetPerVertexAttribute<ScalarType>(mesh, std::string("outlierScore"));
typename MeshType::template PerVertexAttributeHandle<ScalarType> sigma = tri::Allocator<MeshType>:: template GetPerVertexAttribute<ScalarType>(mesh, std::string("sigma"));
typename MeshType::template PerVertexAttributeHandle<ScalarType> plof = tri::Allocator<MeshType>:: template GetPerVertexAttribute<ScalarType>(mesh, std::string("plof"));
#pragma omp parallel for schedule(dynamic, 10)
for (size_t i = 0; i < mesh.vert.size(); i++)
{
PriorityQueue queue;
kdTree.doQueryK(mesh.vert[i].cP(), kNearest, queue);
ScalarType sum = 0;
for (int j = 0; j < queue.getNofElements(); j++)
sum += queue.getWeight(j);
sum /= (queue.getNofElements());
sigma[i] = sqrt(sum);
}
float mean = 0;
#pragma omp parallel for reduction(+: mean) schedule(dynamic, 10)
for (size_t i = 0; i < mesh.vert.size(); i++)
{
PriorityQueue queue;
kdTree.doQueryK(mesh.vert[i].cP(), kNearest, queue);
ScalarType sum = 0;
for (int j = 0; j < queue.getNofElements(); j++)
sum += sigma[queue.getIndex(j)];
sum /= (queue.getNofElements());
plof[i] = sigma[i] / sum - 1.0f;
mean += plof[i] * plof[i];
}
mean /= mesh.vert.size();
mean = sqrt(mean);
#pragma omp parallel for schedule(dynamic, 10)
for (size_t i = 0; i < mesh.vert.size(); i++)
{
ScalarType value = plof[i] / (mean * sqrt(2.0f));
double dem = 1.0 + 0.278393 * value;
dem += 0.230389 * value * value;
dem += 0.000972 * value * value * value;
dem += 0.078108 * value * value * value * value;
ScalarType op = std::max(0.0, 1.0 - 1.0 / dem);
outlierScore[i] = op;
}
tri::Allocator<MeshType>::DeletePerVertexAttribute(mesh, std::string("sigma"));
tri::Allocator<MeshType>::DeletePerVertexAttribute(mesh, std::string("plof"));
};
/**
Select all the vertex of the mesh with an outlier probability above the input threshold [0.0, 1.0].
*/
static int SelectLoOPOutliers(MeshType& mesh, KdTreeType& kdTree, int kNearest, float threshold)
{
ComputeLoOPScore(mesh, kdTree, kNearest);
int count = 0;
typename MeshType:: template PerVertexAttributeHandle<ScalarType> outlierScore = tri::Allocator<MeshType>::template GetPerVertexAttribute<ScalarType>(mesh, std::string("outlierScore"));
for (int i = 0; i < mesh.vert.size(); i++)
{
if (outlierScore[i] > threshold)
{
mesh.vert[i].SetS();
count++;
}
}
return count;
}
/**
Delete all the vertex of the mesh with an outlier probability above the input threshold [0.0, 1.0].
*/
static int DeleteLoOPOutliers(MeshType& m, KdTreeType& kdTree, int kNearest, float threshold)
{
SelectLoOPOutliers(m,kdTree,kNearest,threshold);
int ovn = m.vn;
for(typename MeshType::VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if((*vi).IsS() ) tri::Allocator<MeshType>::DeleteVertex(m,*vi);
tri::Allocator<MeshType>::CompactVertexVector(m);
tri::Allocator<MeshType>::DeletePerVertexAttribute(m, std::string("outlierScore"));
return m.vn - ovn;
}
};
} // end namespace tri
} // end namespace vcg
#endif // VCG_TRI_OUTLIERS_H