616 lines
17 KiB
C++
616 lines
17 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCG_TRI_UPDATE_TOPOLOGY
|
|
#define __VCG_TRI_UPDATE_TOPOLOGY
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <vcg/simplex/face/topology.h>
|
|
|
|
namespace vcg {
|
|
namespace tri {
|
|
/// \ingroup trimesh
|
|
|
|
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
|
|
|
|
/// \brief Generation of per-vertex and per-face topological information.
|
|
|
|
template <class UpdateMeshType>
|
|
class UpdateTopology
|
|
{
|
|
|
|
public:
|
|
typedef UpdateMeshType MeshType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::EdgePointer EdgePointer;
|
|
typedef typename MeshType::EdgeIterator EdgeIterator;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
|
|
|
|
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
|
|
|
|
/// \brief Auxiliairy data structure for computing face face adjacency information.
|
|
/**
|
|
It identifies and edge storing two vertex pointer and a face pointer where it belong.
|
|
*/
|
|
|
|
class PEdge
|
|
{
|
|
public:
|
|
|
|
VertexPointer v[2]; // the two Vertex pointer are ordered!
|
|
FacePointer f; // the face where this edge belong
|
|
int z; // index in [0..2] of the edge of the face
|
|
|
|
PEdge() {}
|
|
|
|
void Set( FacePointer pf, const int nz )
|
|
{
|
|
assert(pf!=0);
|
|
assert(nz>=0);
|
|
assert(nz<pf->VN());
|
|
|
|
v[0] = pf->V(nz);
|
|
v[1] = pf->V(pf->Next(nz));
|
|
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
|
|
|
|
if( v[0] > v[1] ) std::swap(v[0],v[1]);
|
|
f = pf;
|
|
z = nz;
|
|
}
|
|
|
|
inline bool operator < ( const PEdge & pe ) const
|
|
{
|
|
if( v[0]<pe.v[0] ) return true;
|
|
else if( v[0]>pe.v[0] ) return false;
|
|
else return v[1] < pe.v[1];
|
|
}
|
|
|
|
inline bool operator == ( const PEdge & pe ) const
|
|
{
|
|
return v[0]==pe.v[0] && v[1]==pe.v[1];
|
|
}
|
|
/// Convert from edge barycentric coord to the face baricentric coord a point on the current edge.
|
|
/// Face barycentric coordinates are relative to the edge face.
|
|
inline Point3<ScalarType> EdgeBarycentricToFaceBarycentric(ScalarType u) const
|
|
{
|
|
Point3<ScalarType> interp(0,0,0);
|
|
interp[ this->z ] = u;
|
|
interp[(this->z+1)%3] = 1.0f-u;
|
|
return interp;
|
|
}
|
|
};
|
|
|
|
// Fill a vector with all the edges of the mesh.
|
|
// each edge is stored in the vector the number of times that it appears in the mesh, with the referring face.
|
|
// optionally it can skip the faux edges (to retrieve only the real edges of a triangulated polygonal mesh)
|
|
|
|
static void FillEdgeVector(MeshType &m, std::vector<PEdge> &e, bool includeFauxEdge=true)
|
|
{
|
|
FaceIterator pf;
|
|
typename std::vector<PEdge>::iterator p;
|
|
|
|
// Alloco il vettore ausiliario
|
|
//e.resize(m.fn*3);
|
|
FaceIterator fi;
|
|
int n_edges = 0;
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN();
|
|
e.resize(n_edges);
|
|
|
|
p = e.begin();
|
|
for(pf=m.face.begin();pf!=m.face.end();++pf)
|
|
if( ! (*pf).IsD() )
|
|
for(int j=0;j<(*pf).VN();++j)
|
|
if(includeFauxEdge || !(*pf).IsF(j))
|
|
{
|
|
(*p).Set(&(*pf),j);
|
|
++p;
|
|
}
|
|
|
|
if(includeFauxEdge) assert(p==e.end());
|
|
else e.resize(p-e.begin());
|
|
}
|
|
|
|
static void FillUniqueEdgeVector(MeshType &m, std::vector<PEdge> &Edges, bool includeFauxEdge=true)
|
|
{
|
|
FillEdgeVector(m,Edges,includeFauxEdge);
|
|
sort(Edges.begin(), Edges.end()); // Lo ordino per vertici
|
|
|
|
typename std::vector< PEdge>::iterator newEnd = std::unique(Edges.begin(), Edges.end());
|
|
|
|
Edges.resize(newEnd-Edges.begin());
|
|
}
|
|
|
|
/*! \brief Initialize the edge vector all the edges that can be inferred from current face vector, setting up all the current adjacency relations
|
|
*
|
|
*
|
|
*/
|
|
|
|
static void AllocateEdge(MeshType &m)
|
|
{
|
|
// Delete all the edges (if any)
|
|
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
|
|
tri::Allocator<MeshType>::DeleteEdge(m,*ei);
|
|
tri::Allocator<MeshType>::CompactEdgeVector(m);
|
|
|
|
// Compute and add edges
|
|
std::vector<PEdge> Edges;
|
|
FillUniqueEdgeVector(m,Edges);
|
|
assert(m.edge.empty());
|
|
tri::Allocator<MeshType>::AddEdges(m,Edges.size());
|
|
assert(m.edge.size()==Edges.size());
|
|
|
|
// Setup adjacency relations
|
|
if(tri::HasEVAdjacency(m))
|
|
{
|
|
for(size_t i=0; i< Edges.size(); ++i)
|
|
{
|
|
m.edge[i].V(0) = Edges[i].v[0];
|
|
m.edge[i].V(1) = Edges[i].v[1];
|
|
}
|
|
}
|
|
|
|
if(tri::HasEFAdjacency(m)) // Note it is an unordered relation.
|
|
{
|
|
for(size_t i=0; i< Edges.size(); ++i)
|
|
{
|
|
std::vector<FacePointer> fpVec;
|
|
std::vector<int> eiVec;
|
|
face::EFStarFF(Edges[i].f,Edges[i].z,fpVec,eiVec);
|
|
m.edge[i].EFp() = Edges[i].f;
|
|
m.edge[i].EFi() = Edges[i].z;
|
|
}
|
|
}
|
|
|
|
if(tri::HasFEAdjacency(m))
|
|
{
|
|
for(size_t i=0; i< Edges.size(); ++i)
|
|
{
|
|
std::vector<FacePointer> fpVec;
|
|
std::vector<int> eiVec;
|
|
face::EFStarFF(Edges[i].f,Edges[i].z,fpVec,eiVec);
|
|
for(size_t j=0;j<fpVec.size();++j)
|
|
fpVec[j]->FEp(eiVec[j])=&(m.edge[i]);
|
|
|
|
// Edges[i].f->FE(Edges[i].z) = &(m.edge[i]);
|
|
// Connect in loop the non manifold
|
|
// FaceType* fpit=fp;
|
|
// int eit=ei;
|
|
|
|
// do
|
|
// {
|
|
// faceVec.push_back(fpit);
|
|
// indVed.push_back(eit);
|
|
// FaceType *new_fpit = fpit->FFp(eit);
|
|
// int new_eit = fpit->FFi(eit);
|
|
// fpit=new_fpit;
|
|
// eit=new_eit;
|
|
// } while(fpit != fp);
|
|
|
|
|
|
// m.edge[i].EFp() = Edges[i].f;
|
|
// m.edge[i].EFi() = ;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/// \brief Update the Face-Face topological relation by allowing to retrieve for each face what other faces shares their edges.
|
|
static void FaceFace(MeshType &m)
|
|
{
|
|
RequireFFAdjacency(m);
|
|
if( m.fn == 0 ) return;
|
|
|
|
std::vector<PEdge> e;
|
|
FillEdgeVector(m,e);
|
|
sort(e.begin(), e.end()); // Lo ordino per vertici
|
|
|
|
int ne = 0; // Numero di edge reali
|
|
|
|
typename std::vector<PEdge>::iterator pe,ps;
|
|
ps = e.begin();pe=e.begin();
|
|
//for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario
|
|
do
|
|
{
|
|
if( pe==e.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali
|
|
{
|
|
typename std::vector<PEdge>::iterator q,q_next;
|
|
for (q=ps;q<pe-1;++q) // Scansione facce associate
|
|
{
|
|
assert((*q).z>=0);
|
|
//assert((*q).z< 3);
|
|
q_next = q;
|
|
++q_next;
|
|
assert((*q_next).z>=0);
|
|
assert((*q_next).z< (*q_next).f->VN());
|
|
(*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce
|
|
(*q).f->FFi(q->z) = (*q_next).z;
|
|
}
|
|
assert((*q).z>=0);
|
|
assert((*q).z< (*q).f->VN());
|
|
(*q).f->FFp((*q).z) = ps->f;
|
|
(*q).f->FFi((*q).z) = ps->z;
|
|
ps = pe;
|
|
++ne; // Aggiorno il numero di edge
|
|
}
|
|
if(pe==e.end()) break;
|
|
++pe;
|
|
} while(true);
|
|
}
|
|
|
|
/// \brief Update the Vertex-Face topological relation.
|
|
/**
|
|
The function allows to retrieve for each vertex the list of faces sharing this vertex.
|
|
After this call all the VF component are initialized. Isolated vertices have a null list of faces.
|
|
\sa vcg::vertex::VFAdj
|
|
\sa vcg::face::VFAdj
|
|
*/
|
|
|
|
static void VertexFace(MeshType &m)
|
|
{
|
|
RequireVFAdjacency(m);
|
|
|
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
(*vi).VFp() = 0;
|
|
(*vi).VFi() = 0; // note that (0,-1) means uninitiazlied while 0,0 is the valid initialized values for isolated vertices.
|
|
}
|
|
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
if( ! (*fi).IsD() )
|
|
{
|
|
for(int j=0;j<(*fi).VN();++j)
|
|
{
|
|
(*fi).VFp(j) = (*fi).V(j)->VFp();
|
|
(*fi).VFi(j) = (*fi).V(j)->VFi();
|
|
(*fi).V(j)->VFp() = &(*fi);
|
|
(*fi).V(j)->VFi() = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// \headerfile topology.h vcg/complex/algorithms/update/topology.h
|
|
|
|
/// \brief Auxiliairy data structure for computing face face adjacency information.
|
|
/**
|
|
It identifies and edge storing two vertex pointer and a face pointer where it belong.
|
|
*/
|
|
|
|
class PEdgeTex
|
|
{
|
|
public:
|
|
|
|
typename FaceType::TexCoordType v[2]; // the two TexCoord are ordered!
|
|
FacePointer f; // the face where this edge belong
|
|
int z; // index in [0..2] of the edge of the face
|
|
|
|
PEdgeTex() {}
|
|
|
|
void Set( FacePointer pf, const int nz )
|
|
{
|
|
assert(pf!=0);
|
|
assert(nz>=0);
|
|
assert(nz<3);
|
|
|
|
v[0] = pf->WT(nz);
|
|
v[1] = pf->WT(pf->Next(nz));
|
|
assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes)
|
|
|
|
if( v[1] < v[0] ) std::swap(v[0],v[1]);
|
|
f = pf;
|
|
z = nz;
|
|
}
|
|
|
|
inline bool operator < ( const PEdgeTex & pe ) const
|
|
{
|
|
if( v[0]<pe.v[0] ) return true;
|
|
else if( pe.v[0]<v[0] ) return false;
|
|
else return v[1] < pe.v[1];
|
|
}
|
|
inline bool operator == ( const PEdgeTex & pe ) const
|
|
{
|
|
return (v[0]==pe.v[0]) && (v[1]==pe.v[1]);
|
|
}
|
|
inline bool operator != ( const PEdgeTex & pe ) const
|
|
{
|
|
return (v[0]!=pe.v[0]) || (v[1]!=pe.v[1]);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
/// \brief Update the Face-Face topological relation so that it reflects the per-wedge texture connectivity
|
|
|
|
/**
|
|
Using this function two faces are adjacent along the FF relation IFF the two faces have matching texture coords along the involved edge.
|
|
In other words F1->FFp(i) == F2 iff F1 and F2 have the same tex coords along edge i
|
|
*/
|
|
|
|
static void FaceFaceFromTexCoord(MeshType &m)
|
|
{
|
|
RequireFFAdjacency(m);
|
|
RequirePerFaceWedgeTexCoord(m);
|
|
|
|
std::vector<PEdgeTex> e;
|
|
FaceIterator pf;
|
|
typename std::vector<PEdgeTex>::iterator p;
|
|
|
|
if( m.fn == 0 ) return;
|
|
|
|
// e.resize(m.fn*3); // Alloco il vettore ausiliario
|
|
FaceIterator fi;
|
|
int n_edges = 0;
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN();
|
|
e.resize(n_edges);
|
|
|
|
p = e.begin();
|
|
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
|
|
if( ! (*pf).IsD() )
|
|
for(int j=0;j<(*pf).VN();++j)
|
|
{
|
|
if( (*pf).WT(j) != (*pf).WT((*pf).Next(j)))
|
|
{
|
|
(*p).Set(&(*pf),j);
|
|
++p;
|
|
}
|
|
}
|
|
|
|
e.resize(p-e.begin()); // remove from the end of the edge vector the unitiailized ones
|
|
//assert(p==e.end()); // this formulation of the assert argument is not really correct, will crash on visual studio
|
|
sort(e.begin(), e.end());
|
|
|
|
int ne = 0; // number of real edges
|
|
typename std::vector<PEdgeTex>::iterator pe,ps;
|
|
ps = e.begin();pe=e.begin();
|
|
//for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario
|
|
do
|
|
{
|
|
if( pe==e.end() || (*pe) != (*ps) ) // Trovo blocco di edge uguali
|
|
{
|
|
typename std::vector<PEdgeTex>::iterator q,q_next;
|
|
for (q=ps;q<pe-1;++q) // Scansione facce associate
|
|
{
|
|
assert((*q).z>=0);
|
|
assert((*q).z< 3);
|
|
q_next = q;
|
|
++q_next;
|
|
assert((*q_next).z>=0);
|
|
assert((*q_next).z< (*q_next).f->VN());
|
|
(*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce
|
|
(*q).f->FFi(q->z) = (*q_next).z;
|
|
}
|
|
assert((*q).z>=0);
|
|
assert((*q).z< (*q).f->VN());
|
|
(*q).f->FFp((*q).z) = ps->f;
|
|
(*q).f->FFi((*q).z) = ps->z;
|
|
ps = pe;
|
|
++ne; // Aggiorno il numero di edge
|
|
}
|
|
if(pe==e.end()) break;
|
|
++pe;
|
|
} while(true);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// \brief Test correctness of VFtopology
|
|
static void TestVertexFace(MeshType &m)
|
|
{
|
|
SimpleTempData<typename MeshType::VertContainer, int > numVertex(m.vert,0);
|
|
|
|
assert(tri::HasPerVertexVFAdjacency(m));
|
|
|
|
FaceIterator fi;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
if (!(*fi).IsD())
|
|
{
|
|
numVertex[(*fi).V0(0)]++;
|
|
numVertex[(*fi).V1(0)]++;
|
|
numVertex[(*fi).V2(0)]++;
|
|
}
|
|
}
|
|
|
|
VertexIterator vi;
|
|
vcg::face::VFIterator<FaceType> VFi;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
if (!vi->IsD())
|
|
if(vi->VFp()!=0) // unreferenced vertices MUST have VF == 0;
|
|
{
|
|
int num=0;
|
|
assert(vi->VFp() >= &*m.face.begin());
|
|
assert(vi->VFp() <= &m.face.back());
|
|
VFi.f=vi->VFp();
|
|
VFi.z=vi->VFi();
|
|
while (!VFi.End())
|
|
{
|
|
num++;
|
|
assert(!VFi.F()->IsD());
|
|
assert((VFi.F()->V(VFi.I()))==&(*vi));
|
|
++VFi;
|
|
}
|
|
int num1=numVertex[&(*vi)];
|
|
assert(num==num1);
|
|
/*assert(num>1);*/
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Test correctness of FFtopology (only for 2Manifold Meshes!)
|
|
static void TestFaceFace(MeshType &m)
|
|
{
|
|
assert(HasFFAdjacency(m));
|
|
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
|
|
{
|
|
if (!fi->IsD())
|
|
{
|
|
for (int i=0;i<(*fi).VN();i++)
|
|
{
|
|
FaceType *ffpi=fi->FFp(i);
|
|
int e=fi->FFi(i);
|
|
//invariant property of FF topology for two manifold meshes
|
|
assert(ffpi->FFp(e) == &(*fi));
|
|
assert(ffpi->FFi(e) == i);
|
|
|
|
// Test that the two faces shares the same edge
|
|
// Vertices of the i-th edges of the first face
|
|
VertexPointer v0i= fi->V0(i);
|
|
VertexPointer v1i= fi->V1(i);
|
|
// Vertices of the corresponding edge on the other face
|
|
VertexPointer ffv0i= ffpi->V0(e);
|
|
VertexPointer ffv1i= ffpi->V1(e);
|
|
|
|
assert( (ffv0i==v0i) || (ffv0i==v1i) );
|
|
assert( (ffv1i==v0i) || (ffv1i==v1i) );
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Auxiliairy data structure for computing edge edge adjacency information.
|
|
/// It identifies an edge storing a vertex pointer and a edge pointer where it belong.
|
|
class PVertexEdge
|
|
{
|
|
public:
|
|
|
|
VertexPointer v; // the two Vertex pointer are ordered!
|
|
EdgePointer e; // the edge where this vertex belong
|
|
int z; // index in [0..1] of the vertex of the edge
|
|
|
|
PVertexEdge( ) {}
|
|
PVertexEdge( EdgePointer pe, const int nz )
|
|
{
|
|
assert(pe!=0);
|
|
assert(nz>=0);
|
|
assert(nz<2);
|
|
|
|
v= pe->V(nz);
|
|
e = pe;
|
|
z = nz;
|
|
}
|
|
inline bool operator < ( const PVertexEdge & pe ) const { return ( v<pe.v ); }
|
|
inline bool operator == ( const PVertexEdge & pe ) const { return ( v==pe.v ); }
|
|
inline bool operator != ( const PVertexEdge & pe ) const { return ( v!=pe.v ); }
|
|
};
|
|
|
|
|
|
|
|
static void EdgeEdge(MeshType &m)
|
|
{
|
|
RequireEEAdjacency(m);
|
|
std::vector<PVertexEdge> v;
|
|
if( m.en == 0 ) return;
|
|
|
|
// printf("Inserting Edges\n");
|
|
for(EdgeIterator pf=m.edge.begin(); pf!=m.edge.end(); ++pf) // Lo riempio con i dati delle facce
|
|
if( ! (*pf).IsD() )
|
|
for(int j=0;j<2;++j)
|
|
{
|
|
// printf("egde %i ind %i (%i %i)\n",tri::Index(m,&*pf),j,tri::Index(m,pf->V(0)),tri::Index(m,pf->V(1)));
|
|
v.push_back(PVertexEdge(&*pf,j));
|
|
}
|
|
|
|
// printf("en = %i (%i)\n",m.en,m.edge.size());
|
|
sort(v.begin(), v.end()); // Lo ordino per vertici
|
|
|
|
int ne = 0; // Numero di edge reali
|
|
|
|
typename std::vector<PVertexEdge>::iterator pe,ps;
|
|
// for(ps = v.begin(),pe=v.begin();pe<=v.end();++pe) // Scansione vettore ausiliario
|
|
ps = v.begin();pe=v.begin();
|
|
do
|
|
{
|
|
// printf("v %i -> e %i\n",tri::Index(m,(*ps).v),tri::Index(m,(*ps).e));
|
|
if( pe==v.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali
|
|
{
|
|
typename std::vector<PVertexEdge>::iterator q,q_next;
|
|
for (q=ps;q<pe-1;++q) // Scansione edge associati
|
|
{
|
|
assert((*q).z>=0);
|
|
assert((*q).z< 2);
|
|
q_next = q;
|
|
++q_next;
|
|
assert((*q_next).z>=0);
|
|
assert((*q_next).z< 2);
|
|
(*q).e->EEp(q->z) = (*q_next).e; // Collegamento in lista delle facce
|
|
(*q).e->EEi(q->z) = (*q_next).z;
|
|
}
|
|
assert((*q).z>=0);
|
|
assert((*q).z< 2);
|
|
(*q).e->EEp((*q).z) = ps->e;
|
|
(*q).e->EEi((*q).z) = ps->z;
|
|
ps = pe;
|
|
++ne; // Aggiorno il numero di edge
|
|
}
|
|
if(pe==v.end()) break;
|
|
++pe;
|
|
} while(true);
|
|
}
|
|
|
|
static void VertexEdge(MeshType &m)
|
|
{
|
|
RequireVEAdjacency(m);
|
|
|
|
VertexIterator vi;
|
|
EdgeIterator ei;
|
|
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
(*vi).VEp() = 0;
|
|
(*vi).VEi() = 0;
|
|
}
|
|
|
|
for(ei=m.edge.begin();ei!=m.edge.end();++ei)
|
|
if( ! (*ei).IsD() )
|
|
{
|
|
for(int j=0;j<2;++j)
|
|
{
|
|
(*ei).VEp(j) = (*ei).V(j)->VEp();
|
|
(*ei).VEi(j) = (*ei).V(j)->VEi();
|
|
(*ei).V(j)->VEp() = &(*ei);
|
|
(*ei).V(j)->VEi() = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
}; // end class
|
|
|
|
} // End namespace
|
|
} // End namespace
|
|
|
|
|
|
#endif
|