760 lines
26 KiB
C++
760 lines
26 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.2 2005/02/02 16:01:13 pietroni
|
|
1 warning corrected
|
|
|
|
Revision 1.1 2004/10/12 15:42:29 ganovelli
|
|
first working version
|
|
|
|
|
|
****************************************************************************/
|
|
|
|
#ifndef __VCGLIB_REFINE
|
|
#define __VCGLIB_REFINE
|
|
|
|
#include <functional>
|
|
#include <map>
|
|
#include <vector>
|
|
#include <vcg/space/sphere3.h>
|
|
#include <vcg/space/plane3.h>
|
|
#include <vcg/space/tcoord2.h>
|
|
#include <vcg/space/color4.h>
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include<vcg/complex/trimesh/update/topology.h>
|
|
|
|
namespace vcg{
|
|
/* Tabella che codifica le modalita' di split a seconda di quali dei tre edge sono da splittare
|
|
|
|
Il primo numero codifica il numero di triangoli,
|
|
le successive 5 triple codificano i triangoli
|
|
secondo la seguente convenzione:
|
|
0..2 vertici originali del triangolo
|
|
3..5 mp01, mp12, mp20 midpoints of the three edges
|
|
|
|
Nel caso "due lati splittati" e' necessario fare la triangolazione del trapezio bene.
|
|
Per cui in questo caso sono specificati 5 triangoli, il primo e' quello ovvio,
|
|
se dei due lati splittati e' minore il primo va scelta la prima coppia altrimenti la seconda coppia
|
|
|
|
il campo swap codificano le due diagonali da testare per scegliere quale triangolazione usare
|
|
per il caso con tre triangoli: se diag1<diag2 si swappa la il primo lato dell'ultimo triangolo
|
|
(e.g la seconda diag ha come indici i primi due numeri dell'ultimo triangolo)
|
|
*/
|
|
|
|
class Split {
|
|
public:
|
|
int TriNum; // numero di triangoli
|
|
int TV[4][3]; // The triangles coded as the following convention
|
|
// 0..2 vertici originali del triangolo
|
|
// 3..5 mp01, mp12, mp20 midpoints of the three edges
|
|
int swap[2][2]; // the two diagonals to test for swapping
|
|
int TE[4][3]; // the edge-edge correspondence between refined triangles and the old one
|
|
// (3) means the edge of the new triangle is internal;
|
|
};
|
|
|
|
const Split SplitTab[8]={
|
|
/* m20 m12 m01 */
|
|
/* 0 0 0 */ {1, {{0,1,2},{0,0,0},{0,0,0},{0,0,0}}, {{0,0},{0,0}}, {{0,1,2},{0,0,0},{0,0,0},{0,0,0}} },
|
|
/* 0 0 1 */ {2, {{0,3,2},{3,1,2},{0,0,0},{0,0,0}}, {{0,0},{0,0}}, {{0,3,2},{0,1,3},{0,0,0},{0,0,0}} },
|
|
/* 0 1 0 */ {2, {{0,1,4},{0,4,2},{0,0,0},{0,0,0}}, {{0,0},{0,0}}, {{0,1,3},{3,1,2},{0,0,0},{0,0,0}} },
|
|
/* 0 1 1 */ {3, {{3,1,4},{0,3,2},{4,2,3},{0,0,0}}, {{0,4},{3,2}}, {{0,1,3},{0,3,2},{1,3,3},{0,0,0}} },
|
|
/* 1 0 0 */ {2, {{0,1,5},{5,1,2},{0,0,0},{0,0,0}}, {{0,0},{0,0}}, {{0,3,2},{3,1,2},{0,0,0},{0,0,0}} },
|
|
/* 1 0 1 */ {3, {{0,3,5},{3,1,5},{2,5,1},{0,0,0}}, {{3,2},{5,1}}, {{0,3,2},{0,3,3},{2,3,1},{0,0,0}} },
|
|
/* 1 1 0 */ {3, {{2,5,4},{0,1,5},{4,5,1},{0,0,0}}, {{0,4},{5,1}}, {{2,3,1},{0,3,2},{3,3,1},{0,0,0}} },
|
|
/* 1 1 1 */ //{4, {{0,3,5},{3,1,4},{5,4,2},{3,4,5}}, {{0,0},{0,0}}, {{0,3,2},{0,1,3},{3,1,2},{3,3,3}} },
|
|
/* 1 1 1 */ {4, {{3,4,5},{0,3,5},{3,1,4},{5,4,2}}, {{0,0},{0,0}}, {{3,3,3},{0,3,2},{0,1,3},{3,1,2}} },
|
|
};
|
|
|
|
// Classe di suddivisione base. Taglia il lato esattamente a meta'.
|
|
template<class MESH_TYPE>
|
|
struct MidPoint : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename typename MESH_TYPE::CoordType >
|
|
{
|
|
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep){
|
|
nv.P()= (ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0;
|
|
|
|
if( MESH_TYPE::HasPerVertexNormal())
|
|
nv.N()= (ep.f->V(ep.z)->N()+ep.f->V1(ep.z)->N()).Normalize();
|
|
|
|
if( MESH_TYPE::HasPerVertexColor())
|
|
nv.C().lerp(ep.f->V(ep.z)->C(),ep.f->V1(ep.z)->C(),.5f);
|
|
}
|
|
|
|
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
|
|
{
|
|
Color4<typename MESH_TYPE::ScalarType> cc;
|
|
return cc.lerp(c0,c1,0.5f);
|
|
}
|
|
|
|
template<class FL_TYPE>
|
|
TCoord2<FL_TYPE,1> WedgeInterp(TCoord2<FL_TYPE,1> &t0, TCoord2<FL_TYPE,1> &t1)
|
|
{
|
|
TCoord2<FL_TYPE,1> tmp;
|
|
assert(t0.n()== t1.n());
|
|
tmp.n()=t0.n();
|
|
tmp.t()=(t0.t()+t1.t())/2.0;
|
|
return tmp;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
template<class MESH_TYPE>
|
|
struct MidPointArc : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename typename MESH_TYPE::CoordType>
|
|
{
|
|
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep)
|
|
{
|
|
const typename MESH_TYPE::ScalarType EPS =1e-10;
|
|
typename MESH_TYPE::CoordType vp = (ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0;
|
|
typename MESH_TYPE::CoordType n = (ep.f->V(ep.z)->N()+ep.f->V1(ep.z)->N())/2.0;
|
|
typename MESH_TYPE::ScalarType w =n.Norm();
|
|
if(w<EPS) { nv.P()=(ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0; return;}
|
|
n/=w;
|
|
typename MESH_TYPE::CoordType d0 = ep.f->V(ep.z)->P() - vp;
|
|
typename MESH_TYPE::CoordType d1 = ep.f->V1(ep.z)->P()- vp;
|
|
typename MESH_TYPE::ScalarType d=Distance(ep.f->V(ep.z)->P(),ep.f->V1(ep.z)->P())/2.0;
|
|
|
|
typename MESH_TYPE::CoordType nn = ep.f->V1(ep.z)->N() ^ ep.f->V(ep.z)->N();
|
|
typename MESH_TYPE::CoordType np = n ^ d0; // vettore perp al piano edge, normale interpolata
|
|
np.Normalize();
|
|
double sign=1;
|
|
if(np*nn<0) sign=-1; // se le normali non divergono sposta il punto nella direzione opposta
|
|
|
|
typename MESH_TYPE::CoordType n0=ep.f->V(ep.z)->N() -np*(ep.f->V(ep.z)->N()*np);
|
|
n0.Normalize();
|
|
typename MESH_TYPE::CoordType n1=ep.f->V1(ep.z)->N()-np*(ep.f->V1(ep.z)->N()*np);
|
|
assert(n1.Norm()>EPS);
|
|
n1.Normalize();
|
|
typename MESH_TYPE::ScalarType cosa0=n0*n;
|
|
typename MESH_TYPE::ScalarType cosa1=n1*n;
|
|
if(2-cosa0-cosa1<EPS) {nv.P()=(ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0;return;}
|
|
typename MESH_TYPE::ScalarType cosb0=(d0*n)/d;
|
|
typename MESH_TYPE::ScalarType cosb1=(d1*n)/d;
|
|
assert(1+cosa0>EPS);
|
|
assert(1+cosa1>EPS);
|
|
typename MESH_TYPE::ScalarType delta0=d*(cosb0 +sqrt( ((1-cosb0*cosb0)*(1-cosa0))/(1+cosa0)) );
|
|
typename MESH_TYPE::ScalarType delta1=d*(cosb1 +sqrt( ((1-cosb1*cosb1)*(1-cosa1))/(1+cosa1)) );
|
|
assert(delta0+delta1<2*d);
|
|
nv.P()=vp+n*sign*(delta0+delta1)/2.0;
|
|
return ;
|
|
}
|
|
|
|
// Aggiunte in modo grezzo le due wedgeinterp
|
|
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
|
|
{
|
|
Color4<typename MESH_TYPE::ScalarType> cc;
|
|
return cc.lerp(c0,c1,0.5f);
|
|
}
|
|
|
|
template<class FL_TYPE>
|
|
TCoord2<FL_TYPE,1> WedgeInterp(TCoord2<FL_TYPE,1> &t0, TCoord2<FL_TYPE,1> &t1)
|
|
{
|
|
TCoord2<FL_TYPE,1> tmp;
|
|
assert(t0.n()== t1.n());
|
|
tmp.n()=t0.n();
|
|
tmp.t()=(t0.t()+t1.t())/2.0;
|
|
return tmp;
|
|
}
|
|
|
|
};
|
|
|
|
/*
|
|
Versione Della Midpoint basata sul paper:
|
|
S. Karbacher, S. Seeger, G. Hausler
|
|
A non linear subdivision scheme for triangle meshes
|
|
|
|
Non funziona!
|
|
Almeno due problemi:
|
|
1) il verso delle normali influenza il risultato (e.g. si funziona solo se le normali divergono)
|
|
Risolvibile controllando se le normali divergono
|
|
2) gli archi vanno calcolati sul piano definito dalla normale interpolata e l'edge.
|
|
funziona molto meglio nelle zone di sella e non semplici.
|
|
|
|
*/
|
|
template<class MESH_TYPE>
|
|
struct MidPointArcNaive : public std::unary_function< face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
|
|
{
|
|
typename MESH_TYPE::CoordType operator()(face::Pos<typename MESH_TYPE::FaceType> ep)
|
|
{
|
|
|
|
typename MESH_TYPE::CoordType vp = (ep.f->V(ep.z)->P()+ep.f->V1(ep.z)->P())/2.0;
|
|
typename MESH_TYPE::CoordType n = (ep.f->V(ep.z)->N()+ep.f->V1(ep.z)->N())/2.0;
|
|
n.Normalize();
|
|
typename MESH_TYPE::CoordType d0 = ep.f->V(ep.z)->P() - vp;
|
|
typename MESH_TYPE::CoordType d1 = ep.f->V1(ep.z)->P()- vp;
|
|
typename MESH_TYPE::ScalarType d=Distance(ep.f->V(ep.z)->P(),ep.f->V1(ep.z)->P())/2.0;
|
|
|
|
typename MESH_TYPE::ScalarType cosa0=ep.f->V(ep.z)->N()*n;
|
|
typename MESH_TYPE::ScalarType cosa1=ep.f->V1(ep.z)->N()*n;
|
|
typename MESH_TYPE::ScalarType cosb0=(d0*n)/d;
|
|
typename MESH_TYPE::ScalarType cosb1=(d1*n)/d;
|
|
|
|
typename MESH_TYPE::ScalarType delta0=d*(cosb0 +sqrt( ((1-cosb0*cosb0)*(1-cosa0))/(1+cosa0)) );
|
|
typename MESH_TYPE::ScalarType delta1=d*(cosb1 +sqrt( ((1-cosb1*cosb1)*(1-cosa1))/(1+cosa1)) );
|
|
|
|
return vp+n*(delta0+delta1)/2.0;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
A partire da una mesh raffina una volta tutti i lati dei triangoli minore di thr
|
|
Se RefineSelected == true allora raffina SOLO le facce selezionate
|
|
i cui edge sono piu'corti di thr.
|
|
|
|
I nuovi vertici e facce della mesh sono aggiunte in fondo
|
|
Requirement: Topologia (in effetti se non si usa la il raffinamento per selezione non servirebbe)
|
|
|
|
Restituisce false se non raffina nemmeno una faccia.
|
|
|
|
Si assume che se la mesh ha dati per wedge la funzione di midpoint interpoli i nuovi wedge
|
|
tutti uguali per tutti i wedge sulla stessa 'vecchia' faccia.
|
|
|
|
*/
|
|
|
|
// binary predicate che dice quando splittare un edge
|
|
// la refine usa qt funzione di default: raffina se l'edge^2 e' piu lungo di thr2
|
|
|
|
|
|
template <class FLT>
|
|
class EdgeLen
|
|
{
|
|
public:
|
|
FLT thr2;
|
|
bool operator()(const Point3<FLT> &p0, const Point3<FLT> &p1) const
|
|
{
|
|
return SquaredDistance(p0,p1)>thr2;
|
|
}
|
|
};
|
|
/*
|
|
template<class MESH_TYPE, class MIDPOINT>
|
|
bool Refine(MESH_TYPE &m, MIDPOINT mid, typename MESH_TYPE::ScalarType thr=0,bool RefineSelectedP=false)
|
|
{
|
|
volatile RefineW<MESH_TYPE,MIDPOINT,EdgeLen<typename MESH_TYPE::ScalarType>,true> RT;
|
|
volatile RefineW<MESH_TYPE,MIDPOINT,EdgeLen<typename MESH_TYPE::ScalarType>,false> RF;
|
|
|
|
bool retval;
|
|
if(RefineSelectedP) retval=RT.RefineT(m,mid,thr);
|
|
if(!RefineSelectedP) retval=RF.RefineT(m,mid,thr);
|
|
return retval;
|
|
}
|
|
|
|
template<class MESH_TYPE, class MIDPOINT, class EDGEPRED>
|
|
bool RefineE(MESH_TYPE &m, MIDPOINT mid, EDGEPRED ep, bool RefineSelectedP=false)
|
|
{
|
|
RefineW<MESH_TYPE,MIDPOINT,EDGEPRED,true> RT;
|
|
RefineW<MESH_TYPE,MIDPOINT,EDGEPRED,false> RF;
|
|
|
|
bool retval;
|
|
if(RefineSelectedP) retval=RT.RefineT(m,mid,ep);
|
|
if(!RefineSelectedP) retval=RF.RefineT(m,mid,ep);
|
|
return retval;
|
|
}
|
|
*/
|
|
/*********************************************************/
|
|
/*********************************************************/
|
|
/*********************************************************/
|
|
|
|
template<class MESH_TYPE,class MIDPOINT>
|
|
bool Refine(MESH_TYPE &m, MIDPOINT mid, typename MESH_TYPE::ScalarType thr=0,bool RefineSelected=false)
|
|
{
|
|
EdgeLen <typename MESH_TYPE::ScalarType> ep;
|
|
ep.thr2=thr*thr;
|
|
return RefineE(m,mid,ep,RefineSelected);
|
|
}
|
|
|
|
template<class MESH_TYPE,class MIDPOINT, class EDGEPRED>
|
|
bool RefineE(MESH_TYPE &m, MIDPOINT mid, EDGEPRED ep,bool RefineSelected=false)
|
|
{
|
|
int j,NewVertNum=0,NewFaceNum=0;
|
|
typedef std::pair<typename MESH_TYPE::VertexIterator,typename MESH_TYPE::VertexIterator> vvpair;
|
|
std::map<vvpair,typename MESH_TYPE::VertexIterator> Edge2Vert;
|
|
// Primo ciclo si conta quanti sono i vertici e facce da aggiungere
|
|
MESH_TYPE::FaceIterator fi;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
|
|
for(j=0;j<3;j++){
|
|
if(ep((*fi).V(j)->P(),(*fi).V1(j)->P()) &&
|
|
(!RefineSelected || ((*fi).IsS() && (*fi).FFp(j)->IsS())) ){
|
|
++NewFaceNum;
|
|
if(((*fi).V(j)<(*fi).V1(j)) ||
|
|
(*fi).IsB(j))
|
|
++NewVertNum;
|
|
}
|
|
}
|
|
if(NewVertNum==0) return false;
|
|
typename MESH_TYPE::VertexIterator lastv = tri::Allocator<MESH_TYPE>::AddVertices(m,NewVertNum);
|
|
// typename MESH_TYPE::VertexIterator lastv=m.AddVertices(NewVertNum);
|
|
|
|
// Secondo Ciclo si inizializza la mappa da edge a vertici
|
|
// e la posizione dei nuovi vertici
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
|
|
for(j=0;j<3;j++)
|
|
if(ep((*fi).V(j)->P(),(*fi).V1(j)->P()) &&
|
|
(!RefineSelected || ((*fi).IsS() && (*fi).FFp(j)->IsS())) )
|
|
if((*fi).V(j)<(*fi).V1(j) || (*fi).IsB(j)){
|
|
(*lastv).UberFlags()=0;
|
|
mid( (*lastv), face::Pos<typename MESH_TYPE::FaceType> (&*fi,j));
|
|
//(*lastv).P()=((*fi).V(j)->P()+(*fi).V1(j)->P())/2;
|
|
Edge2Vert[ vvpair((*fi).V(j),(*fi).V1(j)) ] = lastv;
|
|
++lastv;
|
|
}
|
|
assert(lastv==m.vert.end());
|
|
|
|
typename MESH_TYPE::FaceIterator lastf = tri::Allocator<MESH_TYPE>::AddFaces(m,NewFaceNum);
|
|
// MESH_TYPE::FaceIterator lastf = m.AddFaces(NewFaceNum);
|
|
// int ddd=0; distance(m.face.begin(),lastf,ddd);
|
|
typename MESH_TYPE::FaceIterator oldendf=lastf;
|
|
|
|
/*
|
|
v0
|
|
|
|
|
|
f0
|
|
|
|
mp01 mp02
|
|
|
|
f3
|
|
f1 f2
|
|
|
|
v1 mp12 v2
|
|
|
|
*/
|
|
|
|
typename MESH_TYPE::VertexIterator vv[6]; // i sei vertici in gioco
|
|
// 0..2 vertici originali del triangolo
|
|
// 3..5 mp01, mp12, mp20 midpoints of the three edges
|
|
MESH_TYPE::FaceIterator nf[4]; // le quattro facce in gioco.
|
|
|
|
TCoord2<typename MESH_TYPE::ScalarType> wtt[6]; // per ogni faccia sono al piu' tre i nuovi valori
|
|
// di texture per wedge (uno per ogni edge)
|
|
|
|
int fca=0,fcn =0;
|
|
for(fi=m.face.begin();fi!=oldendf;++fi) if(!(*fi).IsD())
|
|
{fcn++;
|
|
vv[0]=(*fi).V(0);
|
|
vv[1]=(*fi).V(1);
|
|
vv[2]=(*fi).V(2);
|
|
bool e0=ep((*fi).V(0)->P(),(*fi).V(1)->P());
|
|
bool e1=ep((*fi).V(1)->P(),(*fi).V(2)->P());
|
|
bool e2=ep((*fi).V(2)->P(),(*fi).V(0)->P());
|
|
|
|
if(e0)
|
|
if((*fi).V(0)<(*fi).V(1)|| (*fi).IsB(0)) vv[3]=Edge2Vert[ vvpair((*fi).V(0),(*fi).V(1)) ];
|
|
else vv[3]=Edge2Vert[ vvpair((*fi).V(1),(*fi).V(0)) ];
|
|
else vv[3]=0;
|
|
if(e1)
|
|
if((*fi).V(1)<(*fi).V(2)|| (*fi).IsB(1)) vv[4]=Edge2Vert[ vvpair((*fi).V(1),(*fi).V(2)) ];
|
|
else vv[4]=Edge2Vert[ vvpair((*fi).V(2),(*fi).V(1)) ];
|
|
else vv[4]=0;
|
|
if(e2)
|
|
if((*fi).V(2)<(*fi).V(0)|| (*fi).IsB(2)) vv[5]=Edge2Vert[ vvpair((*fi).V(2),(*fi).V(0)) ];
|
|
else vv[5]=Edge2Vert[ vvpair((*fi).V(0),(*fi).V(2)) ];
|
|
else vv[5]=0;
|
|
int ind=((&*vv[3])?1:0)+((&*vv[4])?2:0)+((&*vv[5])?4:0);
|
|
|
|
nf[0]=fi;
|
|
static int iii=0;
|
|
for(int i=1;i<SplitTab[ind].TriNum;++i){
|
|
nf[i]=lastf; ++lastf; fca++;
|
|
if(RefineSelected) (*nf[i]).SetS();
|
|
}
|
|
|
|
if(MESH_TYPE::HasPerWedgeTexture())
|
|
for(i=0;i<3;++i) {
|
|
wtt[i]=(*fi).WT(i);
|
|
wtt[3+i]=mid.WedgeInterp((*fi).WT(i),(*fi).WT((i+1)%3));
|
|
}
|
|
|
|
int orgflag= (*fi).UberFlags();
|
|
for(i=0;i<SplitTab[ind].TriNum;++i)
|
|
for(j=0;j<3;++j){
|
|
(*nf[i]).V(j)=&*vv[SplitTab[ind].TV[i][j]];
|
|
|
|
if(MESH_TYPE::HasPerWedgeTexture()) //analogo ai vertici...
|
|
(*nf[i]).WT(j)=wtt[SplitTab[ind].TV[i][j]];
|
|
|
|
assert((*nf[i]).V(j)!=0);
|
|
if(SplitTab[ind].TE[i][j]!=3){
|
|
if(orgflag & (MESH_TYPE::FaceType::BORDER0<<(SplitTab[ind].TE[i][j])))
|
|
(*nf[i]).SetB(j);
|
|
else
|
|
(*nf[i]).ClearB(j);
|
|
}
|
|
else (*nf[i]).ClearB(j);
|
|
}
|
|
|
|
if(SplitTab[ind].TriNum==3 &&
|
|
SquaredDistance(vv[SplitTab[ind].swap[0][0]]->P(),vv[SplitTab[ind].swap[0][1]]->P()) <
|
|
SquaredDistance(vv[SplitTab[ind].swap[1][0]]->P(),vv[SplitTab[ind].swap[1][1]]->P()) )
|
|
{ // swap the last two triangles
|
|
(*nf[2]).V(1)=(*nf[1]).V(0);
|
|
(*nf[1]).V(1)=(*nf[2]).V(0);
|
|
if(MESH_TYPE::HasPerWedgeTexture()){ //analogo ai vertici...
|
|
(*nf[2]).WT(1)=(*nf[1]).WT(0);
|
|
(*nf[1]).WT(1)=(*nf[2]).WT(0);
|
|
}
|
|
|
|
if((*nf[1]).IsB(0)) (*nf[2]).SetB(1); else (*nf[2]).ClearB(1);
|
|
if((*nf[2]).IsB(0)) (*nf[1]).SetB(1); else (*nf[1]).ClearB(1);
|
|
(*nf[1]).ClearB(0);
|
|
(*nf[2]).ClearB(0);
|
|
}
|
|
}
|
|
m.fn= m.face.size();
|
|
assert(lastf==m.face.end()); for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()){
|
|
assert((*fi).V(0)>=&*m.vert.begin() && (*fi).V(0)<&*m.vert.end() );
|
|
assert((*fi).V(1)>=&*m.vert.begin() && (*fi).V(1)<&*m.vert.end() );
|
|
assert((*fi).V(2)>=&*m.vert.begin() && (*fi).V(2)<&*m.vert.end() );
|
|
}
|
|
vcg::tri::UpdateTopology<MESH_TYPE>::FaceFace(m);
|
|
return true;
|
|
}
|
|
/*************************************************************************/
|
|
|
|
/*
|
|
Modified Butterfly interpolation scheme,
|
|
as presented in
|
|
Zorin, Schroeder
|
|
Subdivision for modeling and animation
|
|
Siggraph 2000 Course Notes
|
|
*/
|
|
|
|
/*
|
|
|
|
vul-------vu--------vur
|
|
\ / \ /
|
|
\ / \ /
|
|
\ / fu \ /
|
|
vl--------vr
|
|
/ \ fd / \
|
|
/ \ / \
|
|
/ \ / \
|
|
vdl-------vd--------vdr
|
|
|
|
*/
|
|
|
|
template<class MESH_TYPE>
|
|
struct MidPointButterfly : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
|
|
{
|
|
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep)
|
|
{
|
|
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
|
|
typename MESH_TYPE::CoordType *vl,*vr;
|
|
typename MESH_TYPE::CoordType *vl0,*vr0;
|
|
typename MESH_TYPE::CoordType *vu,*vd,*vul,*vur,*vdl,*vdr;
|
|
vl=&he.v->P();
|
|
he.FlipV();
|
|
vr=&he.v->P();
|
|
if(he.IsBorder())
|
|
{
|
|
he.NextB();
|
|
vr0=&he.v->P();
|
|
he.FlipV();
|
|
he.NextB();
|
|
assert(&he.v->P()==vl);
|
|
he.NextB();
|
|
vl0=&he.v->P();
|
|
nv.P()=((*vl)+(*vr))*(9.0/16.0)-((*vl0)+(*vr0))/16.0 ;
|
|
}
|
|
else
|
|
{
|
|
he.FlipE();he.FlipV();
|
|
vu=&he.v->P();
|
|
he.FlipF();he.FlipE();he.FlipV();
|
|
vur=&he.v->P();
|
|
he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vu); // back to vu (on the right)
|
|
he.FlipE();
|
|
he.FlipF();he.FlipE();he.FlipV();
|
|
vul=&he.v->P();
|
|
he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vu); // back to vu (on the left)
|
|
he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vl);// again on vl (but under the edge)
|
|
he.FlipE();he.FlipV();
|
|
vd=&he.v->P();
|
|
he.FlipF();he.FlipE();he.FlipV();
|
|
vdl=&he.v->P();
|
|
he.FlipV();he.FlipE();he.FlipF(); assert(&he.v->P()==vd);// back to vd (on the right)
|
|
he.FlipE();
|
|
he.FlipF();he.FlipE();he.FlipV();
|
|
vdr=&he.v->P();
|
|
|
|
nv.P()=((*vl)+(*vr))/2.0+((*vu)+(*vd))/8.0 - ((*vul)+(*vur)+(*vdl)+(*vdr))/16.0;
|
|
}
|
|
}
|
|
|
|
/// Aggiunte in modo grezzo le due wedge interp
|
|
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
|
|
{
|
|
Color4<typename MESH_TYPE::ScalarType> cc;
|
|
return cc.lerp(c0,c1,0.5f);
|
|
}
|
|
|
|
template<class FL_TYPE>
|
|
TCoord2<FL_TYPE,1> WedgeInterp(TCoord2<FL_TYPE,1> &t0, TCoord2<FL_TYPE,1> &t1)
|
|
{
|
|
TCoord2<FL_TYPE,1> tmp;
|
|
assert(t0.n()== t1.n());
|
|
tmp.n()=t0.n();
|
|
tmp.t()=(t0.t()+t1.t())/2.0;
|
|
return tmp;
|
|
}
|
|
};
|
|
|
|
|
|
#if 0
|
|
int rule=0;
|
|
if(vr==vul) rule+=1;
|
|
if(vl==vur) rule+=2;
|
|
if(vl==vdr) rule+=4;
|
|
if(vr==vdl) rule+=8;
|
|
switch(rule){
|
|
/*
|
|
/* */ case 0 : return ((*vl)+(*vr))/2.0+((*vu)+(*vd))/8.0 - ((*vul)+(*vur)+(*vdl)+(*vdr))/16.0;
|
|
/* ul */ case 1 : return (*vl*6 + *vr*10 + *vu + *vd*3 - *vur - *vdl -*vdr*2 )/16.0;
|
|
/* ur */ case 2 : return (*vr*6 + *vl*10 + *vu + *vd*3 - *vul - *vdr -*vdl*2 )/16.0;
|
|
/* dr */ case 4 : return (*vr*6 + *vl*10 + *vd + *vu*3 - *vdl - *vur -*vul*2 )/16.0;
|
|
/* dl */ case 8 : return (*vl*6 + *vr*10 + *vd + *vu*3 - *vdr - *vul -*vur*2 )/16.0;
|
|
/* ul,ur */ case 3 : return (*vl*4 + *vr*4 + *vd*2 + - *vdr - *vdl )/8.0;
|
|
/* dl,dr */ case 12 : return (*vl*4 + *vr*4 + *vu*2 + - *vur - *vul )/8.0;
|
|
|
|
/* ul,dr */ case 5 :
|
|
/* ur,dl */ case 10 :
|
|
default:
|
|
return (*vl+ *vr)/2.0;
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
/*
|
|
vul-------vu--------vur
|
|
\ / \ /
|
|
\ / \ /
|
|
\ / fu \ /
|
|
vl--------vr
|
|
/ \ fd / \
|
|
/ \ / \
|
|
/ \ / \
|
|
vdl-------vd--------vdr
|
|
|
|
*/
|
|
|
|
// Versione modificata per tenere di conto in meniara corretta dei vertici con valenza alta
|
|
|
|
template<class MESH_TYPE>
|
|
struct MidPointButterfly2 : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
|
|
{
|
|
typename MESH_TYPE::CoordType operator()(face::Pos<typename MESH_TYPE::FaceType> ep)
|
|
{
|
|
double Rules[11][10] =
|
|
{
|
|
{.0}, // valenza 0
|
|
{.0}, // valenza 1
|
|
{.0}, // valenza 2
|
|
{ .4166666667, -.08333333333 , -.08333333333 }, // valenza 3
|
|
{ .375 , .0 , -0.125 , .0 }, // valenza 4
|
|
{ .35 , .03090169945 , -.08090169945 , -.08090169945, .03090169945 }, // valenza 5
|
|
{ .5 , .125 , -0.0625 , .0 , -0.0625 , 0.125 }, // valenza 6
|
|
{ .25 , .1088899050 , -.06042933822 , -.04846056675, -.04846056675, -.06042933822, .1088899050 }, // valenza 7
|
|
{ .21875 , .1196383476 , -.03125 , -.05713834763, -.03125 , -.05713834763, -.03125 ,.1196383476 }, // valenza 8
|
|
{ .1944444444, .1225409480 , -.00513312590 , -.05555555556, -.03407448880, -.03407448880, -.05555555556, -.00513312590, .1225409480 }, // valenza 9
|
|
{ .175 , .1213525492 , .01545084973 , -.04635254918, -.04045084973, -.025 , -.04045084973, -.04635254918, .01545084973, .1213525492 } // valenza 10
|
|
};
|
|
|
|
Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
|
|
typename MESH_TYPE::CoordType *vl,*vr;
|
|
vl=&he.v->P();
|
|
vr=&he.VFlip()->P();
|
|
if(he.IsBorder())
|
|
{he.FlipV();
|
|
typename MESH_TYPE::CoordType *vl0,*vr0;
|
|
he.NextB();
|
|
vr0=&he.v->P();
|
|
he.FlipV();
|
|
he.NextB();
|
|
assert(&he.v->P()==vl);
|
|
he.NextB();
|
|
vl0=&he.v->P();
|
|
return ((*vl)+(*vr))*(9.0/16.0)-((*vl0)+(*vr0))/16.0 ;
|
|
}
|
|
|
|
int kl=0,kr=0; // valence of left and right vertices
|
|
bool bl=false,br=false; // if left and right vertices are of border
|
|
Pos<typename MESH_TYPE::FaceType> heStart=he;assert(he.v->P()==*vl);
|
|
do { // compute valence of left vertex
|
|
he.FlipE();he.FlipF();
|
|
if(he.IsBorder()) bl=true;
|
|
++kl;
|
|
} while(he!=heStart);
|
|
|
|
he.FlipV();heStart=he;assert(he.v->P()==*vr);
|
|
do { // compute valence of right vertex
|
|
he.FlipE();he.FlipF();
|
|
if(he.IsBorder()) br=true;
|
|
++kr;
|
|
} while(he!=heStart);
|
|
if(br||bl) return MidPointButterfly<MESH_TYPE>()( ep );
|
|
if(kr==6 && kl==6) return MidPointButterfly<MESH_TYPE>()( ep );
|
|
TRACE("odd vertex among valences of %i %i\n",kl,kr);
|
|
typename MESH_TYPE::CoordType newposl=*vl*.75, newposr=*vr*.75;
|
|
he.FlipV();heStart=he; assert(he.v->P()==*vl);
|
|
int i=0;
|
|
if(kl!=6)
|
|
do { // compute position of left vertex
|
|
newposl+= he.VFlip()->P() * Rules[kl][i];
|
|
he.FlipE();he.FlipF();
|
|
++i;
|
|
} while(he!=heStart);
|
|
i=0;he.FlipV();heStart=he;assert(he.v->P()==*vr);
|
|
if(kr!=6)
|
|
do { // compute position of right vertex
|
|
newposr+=he.VFlip()->P()* Rules[kr][i];
|
|
he.FlipE();he.FlipF();
|
|
++i;
|
|
} while(he!=heStart);
|
|
if(kr==6) return newposl;
|
|
if(kl==6) return newposr;
|
|
return newposl+newposr;
|
|
}
|
|
};
|
|
|
|
/*
|
|
// Nuovi punti (e.g. midpoint)
|
|
template<class MESH_TYPE>
|
|
struct OddPointLoop : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
|
|
{
|
|
|
|
|
|
}
|
|
|
|
// vecchi punti
|
|
template<class MESH_TYPE>
|
|
struct EvenPointLoop : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
|
|
{
|
|
}
|
|
*/
|
|
|
|
template<class MESH_TYPE>
|
|
struct MidPointPlane : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
|
|
{
|
|
Plane3<typename MESH_TYPE::ScalarType> pl;
|
|
typedef Point3<typename MESH_TYPE::ScalarType> Point3x;
|
|
|
|
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep){
|
|
Point3x &p0=ep.f->V0(ep.z)->P();
|
|
Point3x &p1=ep.f->V1(ep.z)->P();
|
|
double pp= Distance(p0,pl)/(Distance(p0,pl) - Distance(p1,pl));
|
|
|
|
nv.P()=p1*pp + p0*(1.0-pp);
|
|
}
|
|
|
|
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
|
|
{
|
|
Color4<typename MESH_TYPE::ScalarType> cc;
|
|
return cc.lerp(c0,c1,0.5f);
|
|
}
|
|
|
|
template<class FL_TYPE>
|
|
TCoord2<FL_TYPE,1> WedgeInterp(TCoord2<FL_TYPE,1> &t0, TCoord2<FL_TYPE,1> &t1)
|
|
{
|
|
TCoord2<FL_TYPE,1> tmp;
|
|
assert(t0.n()== t1.n());
|
|
tmp.n()=t0.n();
|
|
tmp.t()=(t0.t()+t1.t())/2.0;
|
|
return tmp;
|
|
}
|
|
};
|
|
|
|
|
|
template <class FLT>
|
|
class EdgeSplPlane
|
|
{
|
|
public:
|
|
Plane3<FLT> pl;
|
|
bool operator()(const Point3<FLT> &p0, const Point3<FLT> &p1) const
|
|
{
|
|
if(Distance(pl,p0)>0) {
|
|
if(Distance(pl,p1)>0) return false;
|
|
else return true;
|
|
}
|
|
else if(Distance(pl,p1)<=0) return false;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
|
|
template<class MESH_TYPE>
|
|
struct MidPointSphere : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
|
|
{
|
|
Sphere3<typename MESH_TYPE::ScalarType> sph;
|
|
typedef Point3<typename MESH_TYPE::ScalarType> Point3x;
|
|
|
|
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep){
|
|
Point3x &p0=ep.f->V0(ep.z)->P();
|
|
Point3x &p1=ep.f->V1(ep.z)->P();
|
|
nv.P()= sph.c+((p0+p1)/2.0 - sph.c ).Normalize();
|
|
}
|
|
|
|
Color4<typename MESH_TYPE::ScalarType> WedgeInterp(Color4<typename MESH_TYPE::ScalarType> &c0, Color4<typename MESH_TYPE::ScalarType> &c1)
|
|
{
|
|
Color4<typename MESH_TYPE::ScalarType> cc;
|
|
return cc.lerp(c0,c1,0.5f);
|
|
}
|
|
|
|
template<class FL_TYPE>
|
|
TCoord2<FL_TYPE,1> WedgeInterp(TCoord2<FL_TYPE,1> &t0, TCoord2<FL_TYPE,1> &t1)
|
|
{
|
|
TCoord2<FL_TYPE,1> tmp;
|
|
assert(t0.n()== t1.n());
|
|
tmp.n()=t0.n();
|
|
tmp.t()=(t0.t()+t1.t())/2.0;
|
|
return tmp;
|
|
}
|
|
};
|
|
|
|
|
|
template <class FLT>
|
|
class EdgeSplSphere
|
|
{
|
|
public:
|
|
Sphere3<FLT> sph;
|
|
bool operator()(const Point3<FLT> &p0, const Point3<FLT> &p1) const
|
|
{
|
|
if(Distance(sph,p0)>0) {
|
|
if(Distance(sph,p1)>0) return false;
|
|
else return true;
|
|
}
|
|
else if(Distance(sph,p1)<=0) return false;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // namespace vcg
|
|
|
|
|
|
|
|
|
|
#endif |