684 lines
20 KiB
C++
684 lines
20 KiB
C++
|
||
//#include <vcg/complex/trimesh/bitquad_support.h>
|
||
|
||
/** BIT-QUAD creation support:
|
||
a collection of methods that,
|
||
starting from a triangular mesh, will create your quad-pure or quad-domainant mesh.
|
||
|
||
They all require:
|
||
- per face Q, and FF connectivity, 2-manyfold meshes,
|
||
- and tri- or quad- meshes (no penta, etc) (if in need, use MakeBitTriOnly)
|
||
|
||
|
||
[ list of available methods: ]
|
||
|
||
void MakePureByRefine(Mesh &m)
|
||
- adds a vertex for each tri or quad present
|
||
- thus, miminal complexity increase is the mesh is quad-dominant already
|
||
- old non-border edges are made faux
|
||
- never fails
|
||
|
||
void MakePureByCatmullClark(MeshType &m)
|
||
- adds a vertex in each (non-faux) edge.
|
||
- twice complexity increase w.r.t. "ByRefine" method.
|
||
- preserves edges: old edges are still edges
|
||
- never fails
|
||
|
||
bool MakePureByFlip(MeshType &m [, int maxdist] )
|
||
- does not increase # vertices, just flips edges
|
||
- call in a loop until it returns true (temporary hack)
|
||
- fails if number of triangle is odd (only happens in open meshes)
|
||
- add "StepByStep" to method name if you want it to make a single step (debugging purposes)
|
||
|
||
bool MakeTriEvenBySplit(MeshType& m)
|
||
bool MakeTriEvenByDelete(MeshType& m)
|
||
- two simple variants that either delete or split *at most one* border face
|
||
so that the number of tris will be made even. Return true if it did it.
|
||
- useful to use the previous method, when mesh is still all triangle
|
||
|
||
void MakeDominant(MeshType &m, int level)
|
||
- just merges traingle pairs into quads, trying its best
|
||
- various heuristic available, see descr. for parameter "level"
|
||
- provides good starting point for make-Quad-Only methods
|
||
- uses an ad-hoc measure for "quad quality" (which is hard-wired, for now)
|
||
|
||
void MakeBitTriOnly(MeshType &m)
|
||
- inverse process: returns to tri-only mesh
|
||
|
||
|
||
(more info in comments before each method)
|
||
|
||
*/
|
||
|
||
namespace vcg{namespace tri{
|
||
|
||
template <class _MeshType>
|
||
class BitQuadCreation{
|
||
|
||
public:
|
||
|
||
typedef _MeshType MeshType;
|
||
typedef typename MeshType::ScalarType ScalarType;
|
||
typedef typename MeshType::CoordType CoordType;
|
||
typedef typename MeshType::FaceType FaceType;
|
||
typedef typename MeshType::FaceType* FaceTypeP;
|
||
typedef typename MeshType::VertexType VertexType;
|
||
typedef typename MeshType::FaceIterator FaceIterator;
|
||
typedef typename MeshType::VertexIterator VertexIterator;
|
||
|
||
typedef BitQuad<MeshType> BQ; // static class to make basic quad operations
|
||
|
||
|
||
// helper function:
|
||
// given a triangle, merge it with its best neightboord to form a quad
|
||
template <bool override>
|
||
static void selectBestDiag(FaceType *fi){
|
||
|
||
if (!override) {
|
||
if (fi->IsAnyF()) return;
|
||
}
|
||
|
||
// select which edge to make faux (if any)...
|
||
int whichEdge = -1;
|
||
ScalarType bestScore = fi->Q();
|
||
|
||
whichEdge=-1;
|
||
|
||
for (int k=0; k<3; k++){
|
||
|
||
// todo: check creases? (continue if edge k is a crease)
|
||
|
||
if (!override) {
|
||
if (fi->FFp(k)->IsAnyF()) continue;
|
||
}
|
||
if (fi->FFp(k)==fi) continue; // never make a border faux
|
||
|
||
ScalarType score = BQ::quadQuality( &*fi, k );
|
||
if (override) {
|
||
// don't override anyway iff other face has a better match
|
||
if (score < fi->FFp(k)->Q()) continue;
|
||
}
|
||
if (score>bestScore) {
|
||
bestScore = score;
|
||
whichEdge = k;
|
||
}
|
||
}
|
||
|
||
// ...and make it faux
|
||
if (whichEdge>=0) {
|
||
//if (override && fi->FFp(whichEdge)->IsAnyF()) {
|
||
// new score is the average of both scores
|
||
// fi->Q() = fi->FFp(whichEdge)->Q() = ( bestScore + fi->FFp(whichEdge)->Q() ) /2;
|
||
//} else {
|
||
//}
|
||
|
||
if (override) {
|
||
// clear any faux edge of the other face
|
||
for (int k=0; k<3; k++)
|
||
if (fi->FFp(whichEdge)->IsF(k)) {
|
||
fi->FFp(whichEdge)->ClearF(k);
|
||
fi->FFp(whichEdge)->FFp(k)->ClearF( fi->FFp(whichEdge)->FFi(k) );
|
||
fi->FFp(whichEdge)->FFp(k)->Q()=0.0; // other face's ex-buddy is now single and sad :(
|
||
}
|
||
|
||
// clear all faux edges of this face...
|
||
for (int k=0; k<3; k++)
|
||
if (fi->IsF(k)) {
|
||
fi->ClearF(k);
|
||
fi->FFp(k)->ClearF( fi->FFi(k) );
|
||
fi->FFp(k)->Q()= 0.0; // my ex-buddy is now sad
|
||
}
|
||
}
|
||
// set (new?) quad
|
||
fi->SetF(whichEdge);
|
||
fi->FFp(whichEdge)->SetF( fi->FFi(whichEdge) );
|
||
fi->Q() = fi->FFp(whichEdge)->Q() = bestScore;
|
||
|
||
}
|
||
|
||
|
||
}
|
||
|
||
|
||
|
||
// helper funcion:
|
||
// a pass though all triangles to merge triangle pairs into quads
|
||
template <bool override> // override previous decisions?
|
||
static void MakeDominantPass(MeshType &m){
|
||
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||
selectBestDiag<override>(&(*fi));
|
||
}
|
||
|
||
}
|
||
|
||
// make tri count even by splitting a single triangle...
|
||
static bool MakeTriEvenBySplit(MeshType& m){
|
||
if (m.fn%2==0) return false; // it's already Even
|
||
assert(0); // todo!
|
||
}
|
||
|
||
// make tri count even by delete...
|
||
static bool MakeTriEvenByDelete(MeshType& m)
|
||
{
|
||
|
||
if (m.fn%2==0) return false; // it's already Even
|
||
|
||
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
||
for (int k=0; k<3; k++) {
|
||
if (fi->FFp(k) == &* fi) {
|
||
|
||
// mark the two old neight as border and not faux
|
||
for (int h=1; h<3; h++) {
|
||
int kh=(k+h)%3;
|
||
int j = fi->FFi( kh );
|
||
FaceType *f = fi->FFp(kh);
|
||
if (f != &* fi) {
|
||
f->FFp( j ) = f;
|
||
f->FFi( j ) = j;
|
||
f->ClearF(j);
|
||
}
|
||
}
|
||
|
||
// delete found face
|
||
Allocator<MeshType>::DeleteFace(m,*fi);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
assert(0); // no border face found? then how could the number of tri be Odd?
|
||
return true;
|
||
}
|
||
|
||
|
||
/**
|
||
Given a mesh, makes it bit trianglular (makes all edges NOT faux)
|
||
*/
|
||
static void MakeBitTriOnly(MeshType &m){
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
||
fi->ClearAllF();
|
||
}
|
||
}
|
||
|
||
/** given a quad-and-tree mesh, enforces the "faux edge is 2nd edge" convention.
|
||
* Requires (and updates): FV and FF structure
|
||
* Updates: faux flags
|
||
* Updates: per wedge attributes, if any
|
||
* Other connectivity structures, and per edge and per wedge flags are ignored
|
||
*/
|
||
static bool MakeBitTriQuadConventional(MeshType &m){
|
||
assert(0); // todo
|
||
}
|
||
|
||
/* returns true if mesh is a "conventional" quad mesh.
|
||
I.e. if it is all quads, with third edge faux fora all triangles*/
|
||
static bool IsBitTriQuadConventional(MeshType &m){
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||
if (fi->IsAnyF())
|
||
if ( fi->Flags() & ( FaceType::FAUX012 ) != FaceType::FAUX2 ) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/**
|
||
makes any mesh quad only by refining it so that a quad is created over all
|
||
previous diags
|
||
requires that the mesh is made only of quads and tris.
|
||
*/
|
||
static void MakePureByRefine(MeshType &m){
|
||
|
||
// todo: update VF connectivity if present
|
||
|
||
|
||
int ev = 0; // EXTRA vertices (times 2)
|
||
int ef = 0; // EXTRA faces
|
||
|
||
// first pass: count triangles to be added
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||
int k=0; // number of borders
|
||
if (fi->FFp(0) == &*fi) k++;
|
||
if (fi->FFp(1) == &*fi) k++;
|
||
if (fi->FFp(2) == &*fi) k++;
|
||
|
||
if (!fi->IsAnyF()) {
|
||
// it's a triangle
|
||
if (k==0) // add a vertex in the center of the face, splitting it in 3
|
||
{ ev+=2; ef+=2; }
|
||
if (k==1) // add a vertex in the border edge, splitting it in 2
|
||
{ }
|
||
if (k==2) // do nothing, just mark the non border edge as faux
|
||
{ }
|
||
if (k==3) // disconnected single triangle (all borders): make one edge as faus
|
||
{ }
|
||
}
|
||
else {
|
||
// assuming is a quad (not a penta, etc), i.e. only one faux
|
||
// add a vertex in the center of the faux edge, splitting the face in 2
|
||
ev+=1; ef+=1;
|
||
assert(k!=3);
|
||
}
|
||
}
|
||
assert(ev%2==0); // should be even by now
|
||
ev/=2; // I was counting each of them twice
|
||
|
||
int originalFaceNum = m.fn;
|
||
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,ef);
|
||
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,ev);
|
||
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->ClearV();
|
||
|
||
|
||
// second pass: add faces and vertices
|
||
int nsplit=0; // spits to be done on border in the third pass
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD() && !fi->IsV() ) {
|
||
|
||
fi->SetV();
|
||
|
||
if (!fi->IsAnyF()) {
|
||
// it's a triangle
|
||
|
||
int k=0; // number of borders
|
||
if (fi->FFp(0) == &*fi) k++;
|
||
if (fi->FFp(1) == &*fi) k++;
|
||
if (fi->FFp(2) == &*fi) k++;
|
||
if (k==0) // add a vertex in the center of the face, splitting it in 3
|
||
{
|
||
assert(nvi!=m.vert.end());
|
||
VertexType *nv = &*nvi; nvi++;
|
||
*nv = *fi->V0( 0 ); // lazy: copy everything from the old vertex
|
||
nv->P() = ( fi->V(0)->P() + fi->V(1)->P() + fi->V(2)->P() ) /3.0;
|
||
FaceType *fa = &*fi;
|
||
FaceType *fb = &*nfi; nfi++;
|
||
FaceType *fc = &*nfi; nfi++;
|
||
*fb = *fc = *fa; // lazy: copy everything from the old faces
|
||
fa->V(0) = nv;
|
||
fb->V(1) = nv;
|
||
fc->V(2) = nv;
|
||
|
||
assert( fa->FFp(1)->FFp(fa->FFi(1)) == fa );
|
||
/* */fb->FFp(2)->FFp(fb->FFi(2)) = fb;
|
||
/* */fc->FFp(0)->FFp(fc->FFi(0)) = fc;
|
||
|
||
fa->FFp(0) = fc; fa->FFp(2) = fb; fa->FFi(0) = fa->FFi(2) = 1;
|
||
fb->FFp(1) = fa; fb->FFp(0) = fc; fb->FFi(0) = fb->FFi(1) = 2;
|
||
fc->FFp(1) = fa; fc->FFp(2) = fb; fc->FFi(1) = fc->FFi(2) = 0;
|
||
|
||
if (fb->FFp(2)==fa) fb->FFp(2)=fb; // recover border status
|
||
if (fc->FFp(0)==fa) fc->FFp(0)=fc;
|
||
|
||
fa->ClearAllF();
|
||
fb->ClearAllF();
|
||
fc->ClearAllF();
|
||
fa->SetF(1);
|
||
fb->SetF(2);
|
||
fc->SetF(0);
|
||
|
||
fa->SetV();fb->SetV();fc->SetV();
|
||
}
|
||
if (k==1) { // make a border face faux, anf other two as well
|
||
fi->SetF(0);
|
||
fi->SetF(1);
|
||
fi->SetF(2);
|
||
nsplit++;
|
||
}
|
||
if (k==2) // do nothing, just mark the non border edge as faux
|
||
{
|
||
fi->ClearAllF();
|
||
for (int w=0; w<3; w++) if (fi->FFp(w) != &*fi) fi->SetF(w);
|
||
}
|
||
if (k==3) // disconnected single triangle (all borders): use catmull-clark (tree vertices, split it in 6
|
||
{
|
||
fi->ClearAllF();
|
||
fi->SetF(2);
|
||
nsplit++;
|
||
}
|
||
}
|
||
else {
|
||
// assuming is a part of quad (not a penta, etc), i.e. only one faux
|
||
FaceType *fa = &*fi;
|
||
int ea2 = BQ::FauxIndex(fa); // index of the only faux edge
|
||
FaceType *fb = fa->FFp(ea2);
|
||
int eb2 = fa->FFi(ea2);
|
||
assert(fb->FFp(eb2)==fa) ;
|
||
assert(fa->IsF(ea2));
|
||
//assert(fb->IsF(eb2)); // reciprocal faux edge
|
||
|
||
int ea0 = (ea2+1) %3;
|
||
int ea1 = (ea2+2) %3;
|
||
int eb0 = (eb2+1) %3;
|
||
int eb1 = (eb2+2) %3;
|
||
|
||
// create new vert in center of faux edge
|
||
assert(nvi!=m.vert.end());
|
||
VertexType *nv = &*nvi; nvi++;
|
||
*nv = * fa->V0( ea2 );
|
||
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
|
||
|
||
// split faces: add 2 faces (one per side)
|
||
assert(nfi!=m.face.end());
|
||
FaceType *fc = &*nfi; nfi++;
|
||
assert(nfi!=m.face.end());
|
||
FaceType *fd = &*nfi; nfi++;
|
||
*fc = *fa;
|
||
*fd = *fb;
|
||
|
||
fa->V(ea2) = fc->V(ea0) =
|
||
fb->V(eb2) = fd->V(eb0) = nv ;
|
||
|
||
fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc;
|
||
fb->FFp(eb1)->FFp( fb->FFi(eb1) ) = fd;
|
||
|
||
fa->FFp(ea1) = fc ; fa->FFp(ea2) = fd;
|
||
fa->FFi(ea1) = ea0; fa->FFi(ea2) = eb2;
|
||
fb->FFp(eb1) = fd ; fb->FFp(eb2) = fc;
|
||
fb->FFi(eb1) = eb0; fb->FFi(eb2) = ea2;
|
||
fc->FFp(ea0) = fa ; fc->FFp(ea2) = fb;
|
||
fc->FFi(ea0) = ea1; fc->FFi(ea2) = eb2;
|
||
fd->FFp(eb0) = fb ; fd->FFp(eb2) = fa;
|
||
fd->FFi(eb0) = eb1; fd->FFi(eb2) = ea2;
|
||
|
||
// detect boundaries
|
||
bool ba = fa->FFp(ea0)==fa;
|
||
bool bc = fc->FFp(ea1)==fa;
|
||
bool bb = fb->FFp(eb0)==fb;
|
||
bool bd = fd->FFp(eb1)==fb;
|
||
|
||
if (bc) fc->FFp(ea1)=fc; // repristinate boundary status
|
||
if (bd) fd->FFp(eb1)=fd; // of new faces
|
||
|
||
fa->SetV();
|
||
fb->SetV();
|
||
fc->SetV();
|
||
fd->SetV();
|
||
|
||
fa->ClearAllF();
|
||
fb->ClearAllF();
|
||
fc->ClearAllF();
|
||
fd->ClearAllF();
|
||
|
||
fa->SetF( ea0 );
|
||
fb->SetF( eb0 );
|
||
fc->SetF( ea1 );
|
||
fd->SetF( eb1 );
|
||
|
||
// fix faux mesh boundary... if two any consecutive, merge it in a quad
|
||
if (ba&&bc) {
|
||
fa->ClearAllF(); fa->SetF(ea1);
|
||
fc->ClearAllF(); fc->SetF(ea0);
|
||
ba = bc = false;
|
||
}
|
||
if (bc&&bb) {
|
||
fc->ClearAllF(); fc->SetF(ea2);
|
||
fb->ClearAllF(); fb->SetF(eb2);
|
||
bc = bb = false;
|
||
}
|
||
if (bb&&bd) {
|
||
fb->ClearAllF(); fb->SetF(eb1);
|
||
fd->ClearAllF(); fd->SetF(eb0);
|
||
bb = bd = false;
|
||
}
|
||
if (bd&&ba) {
|
||
fd->ClearAllF(); fd->SetF(eb2);
|
||
fa->ClearAllF(); fa->SetF(ea2);
|
||
bd = ba = false;
|
||
}
|
||
// remaninig boudaries will be fixed by splitting in the last pass
|
||
if (ba) nsplit++;
|
||
if (bb) nsplit++;
|
||
if (bc) nsplit++;
|
||
if (bd) nsplit++;
|
||
}
|
||
}
|
||
assert(nfi==m.face.end());
|
||
assert(nvi==m.vert.end());
|
||
|
||
// now and there are no tris left, but there can be faces with ONE edge border & faux ()
|
||
|
||
// last pass: add vertex on faux border faces... (if any)
|
||
if (nsplit>0) {
|
||
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,nsplit);
|
||
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,nsplit);
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||
FaceType* fa = &*fi;
|
||
int ea2 = -1; // border and faux face (if any)
|
||
if (fa->FFp(0)==fa && fa->IsF(0) ) ea2=0;
|
||
if (fa->FFp(1)==fa && fa->IsF(1) ) ea2=1;
|
||
if (fa->FFp(2)==fa && fa->IsF(2) ) ea2=2;
|
||
|
||
if (ea2 != -1) { // ea2 edge is naughty (border AND faux)
|
||
|
||
int ea0 = (ea2+1) %3;
|
||
int ea1 = (ea2+2) %3;
|
||
|
||
// create new vert in center of faux edge
|
||
VertexType *nv = &*nvi; nvi++;
|
||
*nv = * fa->V0( ea2 );
|
||
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
|
||
|
||
// split face: add 1 face
|
||
FaceType *fc = &*nfi; nfi++;
|
||
*fc = *fa;
|
||
|
||
fa->V(ea2) = fc->V(ea0) = nv ;
|
||
|
||
fc->FFp(ea2) = fc;
|
||
|
||
fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc;
|
||
|
||
fa->FFp(ea1) = fc ;
|
||
fa->FFi(ea1) = ea0;
|
||
fc->FFp(ea0) = fa ; fc->FFp(ea2) = fc;
|
||
fc->FFi(ea0) = ea1;
|
||
|
||
if (fc->FFp(ea1)==fa) fc->FFp(ea1)=fc; // recover border status
|
||
|
||
assert(fa->IsF(ea0) == fa->IsF(ea1) );
|
||
bool b = fa->IsF(ea1);
|
||
|
||
fa->ClearAllF();
|
||
fc->ClearAllF();
|
||
|
||
if (b) {
|
||
fa->SetF( ea0 );
|
||
fc->SetF( ea1 );
|
||
} else {
|
||
fa->SetF( ea1 );
|
||
fc->SetF( ea0 );
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
}
|
||
|
||
|
||
// uses Catmull Clark to enforce quad only meshes
|
||
// each old edge (but not faux) is split in two.
|
||
static void MakePureByCatmullClark(MeshType &m){
|
||
MakePureByRefine(m);
|
||
MakePureByRefine(m);
|
||
// et-voil<69>!!!
|
||
}
|
||
|
||
// Helper funcion:
|
||
// marks edge distance froma a given face.
|
||
// Stops at maxDist or at the distance when a triangle is found
|
||
static FaceType * MarkEdgeDistance(MeshType &m, FaceType *f, int maxDist){
|
||
assert(MeshType::HasPerFaceQuality());
|
||
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!f->IsD()) {
|
||
fi->Q()=maxDist;
|
||
}
|
||
|
||
FaceType * firstTriangleFound = NULL;
|
||
|
||
f->Q() = 0;
|
||
std::vector<FaceType*> stack;
|
||
int stackPos=0;
|
||
stack.push_back(f);
|
||
|
||
while ( stackPos<stack.size() ) {
|
||
FaceType *f = stack[stackPos++];
|
||
for (int k=0; k<3; k++) {
|
||
FaceType *fk = f->FFp(k);
|
||
int fq = int(f->Q()) + ( ! f->IsF(k) );
|
||
if (fk->Q()> fq && fq <= maxDist) {
|
||
if (!fk->IsAnyF()) { firstTriangleFound = fk; maxDist = fq;}
|
||
fk->Q() = fq;
|
||
stack.push_back(fk);
|
||
}
|
||
}
|
||
}
|
||
return firstTriangleFound;
|
||
}
|
||
|
||
|
||
/*
|
||
given a tri-quad mesh,
|
||
uses edge rotates to make a tri move toward another tri and to merges them into a quad.
|
||
|
||
Retunrs number of surviving triangles (0, or 1), or -1 if not done yet.
|
||
StepbyStep: makes just one step!
|
||
use it in a loop as long as it returns 0 or 1.
|
||
|
||
maxdist is the maximal edge distance where to look for a companion triangle
|
||
*/
|
||
static int MakePureByFlipStepByStep(MeshType &m, int maxdist=10000, int restart=false){
|
||
|
||
static FaceType *ta, *tb; // faces to be matched into a quad
|
||
|
||
static int step = 0; // hack
|
||
|
||
if (restart) { step=0; return false; }
|
||
if (step==0) {
|
||
|
||
// find a triangular face ta
|
||
ta = NULL;
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||
if (!fi->IsAnyF()) { ta=&*fi; break; }
|
||
}
|
||
if (!ta) return 0; // success: no triangle left (done?)
|
||
|
||
|
||
tb = MarkEdgeDistance(m,ta,maxdist);
|
||
if (!tb) return 1; // fail: no matching triagle found (increase maxdist?)
|
||
|
||
step=1;
|
||
|
||
} else {
|
||
int marriageEdge=-1;
|
||
bool done = false;
|
||
while (!done) {
|
||
|
||
int bestScore = int(tb->Q());
|
||
int edge = -1;
|
||
bool mustDoFlip;
|
||
|
||
// select which edge to use
|
||
for (int k=0; k<3; k++) {
|
||
if (tb->FFp(k) == tb) continue; // border
|
||
|
||
FaceType* tbk = tb->FFp(k);
|
||
|
||
if (!tbk->IsAnyF()) {done=true; marriageEdge=k; break; } // found my match
|
||
|
||
int back = tb->FFi(k);
|
||
int faux = BQ::FauxIndex(tbk);
|
||
int other = 3-back-faux;
|
||
|
||
int scoreA = int(tbk->FFp(other)->Q());
|
||
|
||
FaceType* tbh = tbk->FFp(faux);
|
||
int fauxh = BQ::FauxIndex(tbh);
|
||
|
||
int scoreB = int(tbh->FFp( (fauxh+1)%3 )->Q());
|
||
int scoreC = int(tbh->FFp( (fauxh+2)%3 )->Q());
|
||
|
||
int scoreABC = std::min( scoreC, std::min( scoreA, scoreB ) );
|
||
if (scoreABC<bestScore) {
|
||
bestScore = scoreABC;
|
||
edge = k;
|
||
mustDoFlip = !(scoreB == scoreABC || scoreC == scoreABC);
|
||
}
|
||
}
|
||
|
||
if (done) break;
|
||
|
||
// use that edge to proceed
|
||
if (mustDoFlip) {
|
||
BQ::FlipDiag( *(tb->FFp(edge)) );
|
||
}
|
||
|
||
FaceType* next = tb->FFp(edge)->FFp( BQ::FauxIndex(tb->FFp(edge)) );
|
||
|
||
// create new edge
|
||
next->ClearAllF();
|
||
tb->FFp(edge)->ClearAllF();
|
||
|
||
// dissolve old edge
|
||
tb->SetF(edge);
|
||
tb->FFp(edge)->SetF( tb->FFi(edge) );
|
||
tb->FFp(edge)->Q() = tb->Q();
|
||
|
||
tb = next;
|
||
break;
|
||
}
|
||
|
||
if (marriageEdge!=-1) {
|
||
// consume the marriage (two tris = one quad)
|
||
assert(!(tb->IsAnyF()));
|
||
assert(!(tb->FFp(marriageEdge)->IsAnyF()));
|
||
tb->SetF(marriageEdge);
|
||
tb->FFp(marriageEdge)->SetF(tb->FFi(marriageEdge));
|
||
|
||
step=0;
|
||
}
|
||
}
|
||
return -1; // not done yet
|
||
}
|
||
|
||
/*
|
||
given a tri-quad mesh,
|
||
uses edge rotates to make a tri move toward another tri and to merges them into a quad.
|
||
- maxdist is the maximal edge distance where to look for a companion triangle
|
||
- retunrs true if all triangles are merged (always, unless they are odd, or maxdist not enough).
|
||
*/
|
||
static bool MakePureByFlip(MeshType &m, int maxdist=10000)
|
||
{
|
||
MakePureByFlipStepByStep(m, maxdist, true); // restart
|
||
int res=-1;
|
||
while (res==-1) res = MakePureByFlipStepByStep(m, maxdist);
|
||
return res==0;
|
||
}
|
||
|
||
/**
|
||
given a triangle mesh, makes it quad dominant by merging triangle pairs into quads
|
||
various euristics:
|
||
level = 0: maximally greedy. Leaves fewest triangles
|
||
level = 1: smarter: leaves more triangles, but makes better quality quads
|
||
level = 2: even more so (marginally)
|
||
*/
|
||
static void MakeDominant(MeshType &m, int level){
|
||
|
||
assert(MeshType::HasPerFaceQuality());
|
||
assert(MeshType::HasPerFaceFlags());
|
||
|
||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
||
fi->ClearAllF();
|
||
fi->Q() = 0;
|
||
}
|
||
|
||
|
||
MakeDominantPass<false> (m);
|
||
if (level>0) MakeDominantPass<true> (m);
|
||
if (level>1) MakeDominantPass<true> (m);
|
||
if (level>0) MakeDominantPass<false> (m);
|
||
}
|
||
|
||
};
|
||
}} // end namespace vcg::tri
|