924 lines
24 KiB
C++
924 lines
24 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.6 2006/10/09 10:07:07 giec
|
|
Optimized version of "EAR HOLE FILLING", the Ear is selected according to its dihedral angle.
|
|
|
|
Revision 1.5 2006/10/06 15:28:14 giec
|
|
first working implementationof "EAR HOLE FILLING".
|
|
|
|
Revision 1.4 2006/10/02 12:06:40 giec
|
|
BugFix
|
|
|
|
Revision 1.3 2006/09/27 15:33:32 giec
|
|
It close one simple hole . . .
|
|
|
|
Revision 1.2 2006/09/27 09:29:53 giec
|
|
Frist working release whit a few bugs.
|
|
It almost fills the hole ...
|
|
|
|
Revision 1.1 2006/09/25 09:17:44 cignoni
|
|
First Non working Version
|
|
|
|
****************************************************************************/
|
|
#ifndef __VCG_TRI_UPDATE_HOLE
|
|
#define __VCG_TRI_UPDATE_HOLE
|
|
|
|
/*
|
|
Questa Classe serve per gestire la non duplicazione degli edge durante la chiusura
|
|
di un buco.
|
|
*/
|
|
namespace vcg {
|
|
namespace tri {
|
|
|
|
template<class MESH>
|
|
class SimpleEdge
|
|
{
|
|
public:
|
|
typename MESH::VertexType v[2];
|
|
SimpleEdge()
|
|
{}
|
|
|
|
SimpleEdge(typename MESH::VertexType v0, typename MESH::VertexType v1)
|
|
{
|
|
if(v0.P().X() != v1.P().X() &&
|
|
v0.P().Y() != v1.P().Y() &&
|
|
v0.P().Z() != v1.P().Z())
|
|
{v[0]=v1; v[1]=v0;}
|
|
else {v[0]=v0; v[1]=v1;}
|
|
}
|
|
|
|
SimpleEdge(face::Pos<typename MESH::FaceType> &ep) {
|
|
//*this=SimpleEdge(*ep.VFlip(), *ep.v);
|
|
MESH::VertexType v0 ,v1;
|
|
v0 = *ep.VFlip();
|
|
v1 = *ep.v;
|
|
if(v0.P().X() != v1.P().X() &&
|
|
v0.P().Y() != v1.P().Y() &&
|
|
v0.P().Z() != v1.P().Z())
|
|
{v[0]=v1; v[1]=v0;}
|
|
else {v[0]=v0; v[1]=v1;}
|
|
}
|
|
|
|
|
|
bool operator < (const SimpleEdge & e) const
|
|
{ v[0] = e.v[0]; v[1]=e.v[1];
|
|
}
|
|
|
|
bool operator != (const SimpleEdge & e)
|
|
{
|
|
if(v[0].P().X() != e.v[0].P().X() &&
|
|
v[0].P().Y() != e.v[0].P().Y() &&
|
|
v[0].P().Z() != e.v[0].P().Z())
|
|
return true;
|
|
else return false;
|
|
|
|
}
|
|
};
|
|
|
|
template<class MESH>
|
|
class HoleInfo
|
|
{
|
|
public:
|
|
HoleInfo(){}
|
|
HoleInfo(face::Pos<typename MESH::FaceType> const &pHole, int const pHoleSize, vcg::Box3<typename MESH::ScalarType> &pHoleBB)
|
|
{
|
|
p=pHole;
|
|
size=pHoleSize;
|
|
bb=pHoleBB;
|
|
}
|
|
|
|
HoleInfo(face::Pos<typename MESH::FaceType> const &pHole, int const pHoleSize, vcg::Box3<typename MESH::ScalarType> &pHoleBB, int FI)
|
|
{
|
|
p=pHole;
|
|
size=pHoleSize;
|
|
bb=pHoleBB;
|
|
faceindex = FI;
|
|
}
|
|
|
|
|
|
typename face::Pos<typename MESH::FaceType> p;
|
|
int size;
|
|
vcg::Box3<typename MESH::ScalarType> bb;
|
|
int faceindex;
|
|
|
|
void Refresh(MESH &m)
|
|
{
|
|
p.f = (MESH::FacePointer)(faceindex + &(*(m.face.begin())));
|
|
}
|
|
|
|
bool operator < (const HoleInfo & hh) const {return size < hh.size;}
|
|
bool operator > (const HoleInfo & hh) const {return size > hh.size;}
|
|
bool operator == (const HoleInfo & hh) const {return size == hh.size;}
|
|
bool operator != (const HoleInfo & hh) const {return size != hh.size;}
|
|
bool operator >= (const HoleInfo & hh) const {return size >= hh.size;}
|
|
bool operator <= (const HoleInfo & hh) const {return size <= hh.size;}
|
|
|
|
typename MESH::ScalarType Perimeter()
|
|
{
|
|
MESH::ScalarType sum=0;
|
|
face::Pos<typename MESH::FaceType> ip = p;
|
|
do
|
|
{
|
|
sum+=Distance(ip.v->cP(),ip.VFlip()->cP());
|
|
ip.NextB();
|
|
}
|
|
while (ip != p);
|
|
return sum;
|
|
}
|
|
|
|
|
|
int CollectEdges(std::vector< SimpleEdge<MESH> > &EV)
|
|
{
|
|
assert(p.IsBorder());
|
|
EV.clear();
|
|
int tsz=0;
|
|
face::Pos<typename MESH::FaceType> ip=p;
|
|
face::Pos<typename MESH::FaceType> tp;
|
|
|
|
do
|
|
{
|
|
// Stesso codice della nextb
|
|
do
|
|
{
|
|
ip.NextE();
|
|
EV.push_back(SimpleEdge<MESH>(ip)); // l'edge che sto scorrendo
|
|
tp=ip;
|
|
tp.FlipV();tp.FlipE();
|
|
EV.push_back(SimpleEdge<MESH>(tp)); // l'edge della faccia su cui sono e opposto al vertice su cui ruoto
|
|
tp.FlipF(); tp.FlipE();
|
|
EV.push_back(SimpleEdge<MESH>(tp)); // gli altri due edge della faccia opposta a questa
|
|
tp.FlipE();
|
|
EV.push_back(SimpleEdge<MESH>(tp));
|
|
}
|
|
while(!ip.f->IsB(ip.z));
|
|
ip.FlipV();
|
|
++tsz;
|
|
}
|
|
while (ip != p);
|
|
assert(tsz==size);
|
|
|
|
return EV.size();
|
|
}
|
|
};
|
|
|
|
template<class MESH>
|
|
void FindHole(MESH &m, face::Pos<typename MESH::FaceType> ep, HoleInfo<MESH> &h)
|
|
{
|
|
if(!ep.IsBorder()) return;
|
|
|
|
int holesize = 0;
|
|
|
|
Box3<MESH::ScalarType> hbox;
|
|
if(ep.v->IsR()) hbox.Add(ep.v->cP());
|
|
face::Pos<typename MESH::FaceType> init;
|
|
init = ep;
|
|
do
|
|
{
|
|
ep.NextB();
|
|
ep.f->SetV();
|
|
if(ep.v->IsR()) hbox.Add(ep.v->cP());
|
|
++holesize;
|
|
}
|
|
while (ep != init);
|
|
h=HoleInfo<MESH>(ep,holesize,hbox);
|
|
}
|
|
|
|
template<class MESH,class STL_CONTAINER_HOLES>
|
|
void FindHole(MESH &m, STL_CONTAINER_HOLES & H)
|
|
{
|
|
MESH::FaceIterator pf;
|
|
int holesize;
|
|
for (pf=m.face.begin(); pf!=m.face.end(); ++pf)
|
|
if( !(*pf).IsD() && (*pf).IsW() )
|
|
(*pf).ClearS();
|
|
|
|
face::Pos<typename MESH::FaceType> ep;
|
|
for (pf=m.face.begin(); pf!=m.face.end(); ++pf)
|
|
{
|
|
if( !(*pf).IsD() && !(*pf).IsS() && (*pf).IsR() )
|
|
{
|
|
for(int j=0; j<3; ++j)
|
|
if( (*pf).IsB(j) && !(*pf).IsS() && (*pf).IsR() )
|
|
{
|
|
(*pf).SetS();
|
|
ep.Set(&*pf, j, (*pf).V(j));
|
|
holesize = 0;
|
|
|
|
Box3<MESH::ScalarType> hbox;
|
|
if(ep.v->IsR()) hbox.Add(ep.v->cP());
|
|
face::Pos<typename MESH::FaceType> init;
|
|
init = ep;
|
|
do
|
|
{
|
|
ep.NextB();
|
|
ep.f->SetS();
|
|
if(ep.v->IsR()) hbox.Add(ep.v->cP());
|
|
++holesize;
|
|
}
|
|
while (ep != init);
|
|
H.push_back(HoleInfo<MESH>(ep,holesize,hbox));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
/*
|
|
Un ear e' identificato da due hedge pos.
|
|
|
|
i vertici dell'ear sono
|
|
e0.FlipV().v
|
|
e0.v
|
|
e1.v
|
|
|
|
Vale che e1== e0.NextB();
|
|
e che e1.FlipV() == e0;
|
|
|
|
Situazioni ear non manifold, e degeneri (buco triangolare)
|
|
|
|
|
|
T XXXXXXXXXXXXX A /XXXXX B en/XXXXX
|
|
/XXXXXXXXXXXXXXX /XXXXXX /XXXXXX
|
|
XXXXXXep==en XXX ep\ /en XXXX /e1 XXXX
|
|
XXXXXX ----/| XX ------ ----/| XX ------ ----/|XXX
|
|
XXXXXX| /e1 XX XXXXXX| /e1 XX XXXXXX| o/e0 XX
|
|
XXXXXX| /XXXXXX XXXXXX| /XXXXXX XXXXXX| /XXXXXX
|
|
XXX e0|o/XXXXXXX XXX e0|o/XXXXXXX XXX ep| /XXXXXXX
|
|
XXX \|/XXXXXXXX XXX \|/XXXXXXXX XXX \|/XXXXXXXX
|
|
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
|
|
|
|
*/
|
|
template<class MSH_TYPE> class TrivialEar
|
|
{
|
|
public:
|
|
face::Pos<typename MSH_TYPE::FaceType> e0;
|
|
face::Pos<typename MSH_TYPE::FaceType> e1;
|
|
typename MSH_TYPE::ScalarType quality;
|
|
TrivialEar(){}
|
|
TrivialEar(const face::Pos<typename MSH_TYPE::FaceType> & ep)
|
|
{
|
|
e0=ep;
|
|
assert(e0.IsBorder());
|
|
e1=e0;
|
|
e1.NextB();
|
|
ComputeQuality();
|
|
}
|
|
|
|
// Nota: minori invertiti
|
|
inline bool operator < ( const TrivialEar & c ) const { return quality > c.quality; }
|
|
inline bool operator > ( const TrivialEar & c ) const { return quality < c.quality; }
|
|
inline bool operator == ( const TrivialEar & c ) const { return quality == c.quality; }
|
|
inline bool operator != ( const TrivialEar & c ) const { return quality != c.quality; }
|
|
inline bool operator >= ( const TrivialEar & c ) const { return quality <= c.quality; }
|
|
inline bool operator <= ( const TrivialEar & c ) const { return quality >= c.quality; }
|
|
|
|
bool IsNull(){return e0.IsNull() || e1.IsNull();}
|
|
void SetNull(){e0.SetNull();e1.SetNull();}
|
|
void ComputeQuality()
|
|
{
|
|
//comute quality by max(dihedral ancgle)
|
|
Point3f n1 = (e0.v->N() + e1.v->N() + e0.VFlip()->N() ) / 3;
|
|
face::Pos<typename MSH_TYPE::FaceType> tmp = e1;
|
|
tmp.FlipE();tmp.FlipV();
|
|
Point3f n2= ( e1.VFlip()->N()+ e1.v->N()+ tmp.v->N())/3;
|
|
MSH_TYPE::ScalarType qt;
|
|
qt = Angle(n1,n2);
|
|
quality = qt * -1000;
|
|
};//dovrebbe
|
|
bool IsUpToDate() {return (e0.IsBorder() && e1.IsBorder());};
|
|
|
|
bool Degen()
|
|
{
|
|
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
|
face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1
|
|
|
|
// caso ear degenere per buco triangolare
|
|
if(ep==en) return true;//provo a togliere sto controllo
|
|
// Caso ear non manifold a
|
|
if(ep.v==en.v) return true;
|
|
// Caso ear non manifold b
|
|
if(ep.VFlip()==e1.v) return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Close(TrivialEar &ne0, TrivialEar &ne1, typename MSH_TYPE::FaceType * f)
|
|
{
|
|
// simple topological check
|
|
if(e0.f==e1.f) {
|
|
printf("Avoided bad ear");
|
|
return false;
|
|
}
|
|
|
|
//usato per generare una delle due nuove orecchie.
|
|
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
|
face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1
|
|
|
|
(*f).V(0) = e0.VFlip();
|
|
(*f).V(1) = e0.v;
|
|
(*f).V(2) = e1.v;
|
|
|
|
(*f).FFp(0) = e0.f;
|
|
(*f).FFi(0) = e0.z;
|
|
(*f).FFp(1) = e1.f;
|
|
(*f).FFi(1) = e1.z;
|
|
(*f).FFp(2) = f;
|
|
(*f).FFi(2) = 2;
|
|
|
|
e0.f->FFp(e0.z)=f;
|
|
e0.f->FFi(e0.z)=0;
|
|
|
|
e1.f->FFp(e1.z)=f;
|
|
e1.f->FFi(e1.z)=1;
|
|
|
|
// caso ear degenere per buco triangolare
|
|
if(ep==en)
|
|
{
|
|
printf("Closing the last triangle");
|
|
f->FFp(2)=en.f;
|
|
f->FFi(2)=en.z;
|
|
en.f->FFp(en.z)=f;
|
|
en.f->FFi(en.z)=2;
|
|
ne0.SetNull();
|
|
ne1.SetNull();
|
|
}
|
|
// Caso ear non manifold a
|
|
else if(ep.v==en.v)
|
|
{
|
|
printf("Ear Non manif A\n");
|
|
face::Pos<typename MSH_TYPE::FaceType> enold=en;
|
|
en.NextB();
|
|
f->FFp(2)=enold.f;
|
|
f->FFi(2)=enold.z;
|
|
enold.f->FFp(enold.z)=f;
|
|
enold.f->FFi(enold.z)=2;
|
|
ne0=TrivialEar(ep);
|
|
ne1=TrivialEar(en);
|
|
}
|
|
// Caso ear non manifold b
|
|
else if(ep.VFlip()==e1.v)
|
|
{
|
|
printf("Ear Non manif B\n");
|
|
face::Pos<typename MSH_TYPE::FaceType> epold=ep;
|
|
ep.FlipV(); ep.NextB(); ep.FlipV();
|
|
f->FFp(2)=epold.f;
|
|
f->FFi(2)=epold.z;
|
|
epold.f->FFp(epold.z)=f;
|
|
epold.f->FFi(epold.z)=2;
|
|
ne0=TrivialEar(ep);
|
|
ne1=TrivialEar(en);
|
|
}
|
|
else // caso standard
|
|
// Now compute the new ears;
|
|
{
|
|
ne0=TrivialEar(ep);
|
|
ne1=TrivialEar(face::Pos<typename MSH_TYPE::FaceType>(f,2,e1.v));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
|
|
template<class MSH_TYPE> class LeipaEar
|
|
|
|
{
|
|
public:
|
|
face::Pos<typename MSH_TYPE::FaceType> e0;
|
|
face::Pos<typename MSH_TYPE::FaceType> e1;
|
|
typename MSH_TYPE::ScalarType dihedral;
|
|
typename MSH_TYPE::ScalarType area;
|
|
LeipaEar(){}
|
|
LeipaEar(const face::Pos<typename MSH_TYPE::FaceType> & ep)
|
|
{
|
|
e0=ep;
|
|
assert(e0.IsBorder());
|
|
e1=e0;
|
|
e1.NextB();
|
|
ComputeQuality();
|
|
}
|
|
|
|
// Nota: minori invertiti
|
|
inline bool operator < ( const LeipaEar & c ) const
|
|
{
|
|
if(dihedral < c.dihedral)return true;
|
|
else return ((dihedral == c.dihedral) && (area < c.area));
|
|
}
|
|
inline bool operator > ( const LeipaEar & c ) const
|
|
{
|
|
if(dihedral > c.dihedral)return true;
|
|
else return ((dihedral == c.dihedral) && (area > c.area));
|
|
}
|
|
inline bool operator == ( const LeipaEar & c ) const
|
|
{
|
|
return ((dihedral == c.dihedral) && (area == c.area));
|
|
}
|
|
inline bool operator != ( const LeipaEar & c ) const
|
|
{
|
|
return ((dihedral != c.dihedral)&& (area != c.area));
|
|
}
|
|
|
|
bool IsNull(){return e0.IsNull() || e1.IsNull();}
|
|
void SetNull(){e0.SetNull();e1.SetNull();}
|
|
void ComputeQuality()
|
|
{
|
|
//comute quality by (dihedral ancgle, area)
|
|
Point3f n1 = (e0.v->N() + e1.v->N() + e0.VFlip()->N() ) / 3;
|
|
face::Pos<typename MSH_TYPE::FaceType> tmp = e1;
|
|
tmp.FlipE();tmp.FlipV();
|
|
Point3f n2=(e1.VFlip()->N() + e1.v->N() + tmp.v->N() ) / 3;
|
|
MSH_TYPE::ScalarType qt;
|
|
qt = Angle(n1,n2);
|
|
|
|
dihedral = qt * -1000;
|
|
|
|
MSH_TYPE::ScalarType ar;
|
|
ar = ( (e0.VFlip()->P() - e0.v->P()) ^ ( e1.v->P() - e0.v->P()) ).Norm() ;
|
|
area = (ar)*1000;
|
|
|
|
};//dovrebbe
|
|
bool IsUpToDate() {return (e0.IsBorder() && e1.IsBorder());};
|
|
|
|
bool Degen()
|
|
{
|
|
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
|
face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1
|
|
|
|
// caso ear degenere per buco triangolare
|
|
if(ep==en) return true;//provo a togliere sto controllo
|
|
// Caso ear non manifold a
|
|
if(ep.v==en.v) return true;
|
|
// Caso ear non manifold b
|
|
if(ep.VFlip()==e1.v) return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Close(LeipaEar &ne0, LeipaEar &ne1, typename MSH_TYPE::FaceType * f)
|
|
{
|
|
// simple topological check
|
|
if(e0.f==e1.f) {
|
|
printf("Avoided bad ear");
|
|
return false;
|
|
}
|
|
|
|
//usato per generare una delle due nuove orecchie.
|
|
face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
|
face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1
|
|
|
|
(*f).V(0) = e0.VFlip();
|
|
(*f).V(1) = e0.v;
|
|
(*f).V(2) = e1.v;
|
|
|
|
(*f).FFp(0) = e0.f;
|
|
(*f).FFi(0) = e0.z;
|
|
(*f).FFp(1) = e1.f;
|
|
(*f).FFi(1) = e1.z;
|
|
(*f).FFp(2) = f;
|
|
(*f).FFi(2) = 2;
|
|
|
|
e0.f->FFp(e0.z)=f;
|
|
e0.f->FFi(e0.z)=0;
|
|
|
|
e1.f->FFp(e1.z)=f;
|
|
e1.f->FFi(e1.z)=1;
|
|
|
|
// caso ear degenere per buco triangolare
|
|
if(ep==en)
|
|
{
|
|
printf("Closing the last triangle");
|
|
f->FFp(2)=en.f;
|
|
f->FFi(2)=en.z;
|
|
en.f->FFp(en.z)=f;
|
|
en.f->FFi(en.z)=2;
|
|
ne0.SetNull();
|
|
ne1.SetNull();
|
|
}
|
|
// Caso ear non manifold a
|
|
else if(ep.v==en.v)
|
|
{
|
|
printf("Ear Non manif A\n");
|
|
face::Pos<typename MSH_TYPE::FaceType> enold=en;
|
|
en.NextB();
|
|
f->FFp(2)=enold.f;
|
|
f->FFi(2)=enold.z;
|
|
enold.f->FFp(enold.z)=f;
|
|
enold.f->FFi(enold.z)=2;
|
|
ne0=LeipaEar(ep);
|
|
ne1=LeipaEar(en);
|
|
}
|
|
// Caso ear non manifold b
|
|
else if(ep.VFlip()==e1.v)
|
|
{
|
|
printf("Ear Non manif B\n");
|
|
face::Pos<typename MSH_TYPE::FaceType> epold=ep;
|
|
ep.FlipV(); ep.NextB(); ep.FlipV();
|
|
f->FFp(2)=epold.f;
|
|
f->FFi(2)=epold.z;
|
|
epold.f->FFp(epold.z)=f;
|
|
epold.f->FFi(epold.z)=2;
|
|
ne0=LeipaEar(ep);
|
|
ne1=LeipaEar(en);
|
|
}
|
|
else // caso standard
|
|
// Now compute the new ears;
|
|
{
|
|
ne0=LeipaEar(ep);
|
|
ne1=LeipaEar(face::Pos<typename MSH_TYPE::FaceType>(f,2,e1.v));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
|
|
// Funzione principale per chiudier un buco in maniera topologicamente corretta.
|
|
// Gestisce situazioni non manifold ragionevoli
|
|
// (tutte eccetto quelle piu' di 2 facce per 1 edge).
|
|
// Controlla che non si generino nuove situazioni non manifold chiudendo orecchie
|
|
// che sottendono un edge che gia'esiste.
|
|
template<class MESH>
|
|
tri::HoleInfo<MESH> getHoleInfo(MESH &m, face::Pos<typename MESH::FaceType> sp,
|
|
face::Pos<typename MESH::FaceType> fp,
|
|
int UBIT)
|
|
{
|
|
int holesize=0;
|
|
|
|
Box3<MESH::ScalarType> hbox;
|
|
hbox.Add(sp.v->cP());
|
|
|
|
do
|
|
{
|
|
sp.f->SetUserBit(UBIT);
|
|
hbox.Add(sp.v->cP());
|
|
++holesize;
|
|
sp.NextB();
|
|
assert(sp.IsBorder());
|
|
}while(sp != fp);
|
|
|
|
int tmp = ((int)(sp.f - &(*(m.face.begin()))));
|
|
return tri::HoleInfo<MESH>(sp,holesize,hbox, tmp );
|
|
}
|
|
|
|
template<class MESH,class EAR , class VECTOR_EAR>
|
|
void refreshHole(MESH &m, VECTOR_EAR &ve, face::Pos<typename MESH::FaceType> &fp, std::vector<typename MESH::VertexType > &vv)
|
|
{
|
|
face::Pos<typename MESH::FaceType> ff = fp;
|
|
|
|
do{
|
|
ve.push_back(EAR(fp));
|
|
vv.push_back(*fp.v);
|
|
fp.NextB();//semmai da provare a sostituire il codice della NextB();
|
|
assert(fp.IsBorder());
|
|
}while(fp!=ff);
|
|
|
|
}
|
|
|
|
template <class MESH, class EAR>
|
|
void fillHoleEar(MESH &m, tri::HoleInfo<MESH> &h ,int UBIT)
|
|
{
|
|
//Aggiungo le facce e aggiorno il puntatore alla faccia!
|
|
std::vector<MESH::FacePointer *> app;
|
|
app.push_back( &h.p.f );
|
|
MESH::FaceIterator f = tri::Allocator<MESH>::AddFaces(m, h.size-2, app);
|
|
h.Refresh(m);
|
|
assert(h.p.IsBorder());//test fondamentale altrimenti qualcosa s'e' rotto!
|
|
|
|
std::vector<MESH::VertexType > vv; //vettore di vertici
|
|
std::vector<EAR > H; //vettore di orecchie
|
|
|
|
H.reserve(h.size);
|
|
|
|
//prendo le informazioni sul buco
|
|
refreshHole<MESH,EAR, std::vector<EAR> >(m,H,h.p,vv);
|
|
|
|
bool fitted = false;
|
|
int cnt=h.size;
|
|
MESH::FaceIterator tmp;
|
|
|
|
make_heap(H.begin(), H.end());
|
|
|
|
while( cnt > 2 && !H.empty() ) //finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare
|
|
{
|
|
|
|
pop_heap(H.begin(), H.end());
|
|
|
|
EAR en0,en1;
|
|
|
|
MESH::FaceIterator Fadd = f;
|
|
|
|
if(H.back().IsUpToDate())
|
|
{
|
|
if(H.back().Degen()){
|
|
// Nota che nel caso di ear degeneri si DEVE permettere la creazione di un edge che gia'esiste
|
|
printf("\n -> Evitata orecchia brutta!");
|
|
}
|
|
else
|
|
{
|
|
if(H.back().Close(en0,en1,&*f))
|
|
{
|
|
if(!en0.IsNull()){
|
|
H.push_back(en0);
|
|
push_heap( H.begin(), H.end());
|
|
}
|
|
if(!en1.IsNull()){
|
|
H.push_back(en1);
|
|
push_heap( H.begin(), H.end());
|
|
}
|
|
--cnt;
|
|
f->SetUserBit(UBIT);
|
|
++f;
|
|
fitted = true;
|
|
}
|
|
}
|
|
|
|
if(cnt == 3 && !fitted)
|
|
{//ultimo buco o unico buco
|
|
if(H.back().Close(en0,en1,&*f))
|
|
{
|
|
--cnt;
|
|
tmp = f;
|
|
++f;
|
|
}
|
|
}
|
|
}//is update()
|
|
fitted = false;
|
|
//non ho messo il triangolo quindi tolgo l'orecchio e continuo
|
|
H.pop_back();
|
|
}//fine del while principale
|
|
|
|
while(f!=m.face.end())
|
|
{
|
|
(*f).SetD();
|
|
++f;
|
|
m.fn--;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
template<class MESH, class EAR>
|
|
void holeFillingEar(MESH &m, int sizeHole,bool Selected = false)
|
|
{
|
|
MESH::FaceIterator fi;
|
|
std::vector<tri::HoleInfo<MESH> > vinfo;
|
|
int UBIT = fi->LastBitFlag();
|
|
|
|
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
|
|
{
|
|
if(!(*fi).IsD())
|
|
{
|
|
if(Selected && !(*fi).IsS())
|
|
{
|
|
//se devo considerare solo i triangoli selezionati e
|
|
//quello che sto considerando non lo e' lo marchio e vado avanti
|
|
(*fi).SetUserBit(UBIT);
|
|
}
|
|
else
|
|
{
|
|
if( !(*fi).IsUserBit(UBIT) )
|
|
{
|
|
(*fi).SetUserBit(UBIT);
|
|
for(int j =0; j<3 ; ++j)
|
|
{
|
|
if( (*fi).IsB(j) )
|
|
{//Trovato una faccia di bordo non ancora visitata.
|
|
face::Pos<typename MESH::FaceType> sp(&*fi, j, (*fi).V(j));
|
|
|
|
// if(!(*fi).IsR())return;
|
|
tri::HoleInfo<MESH> HI = getHoleInfo<MESH>(m,sp,sp, UBIT);
|
|
//ho recuperato l'inofrmazione su tutto il buco
|
|
vinfo.push_back(HI);
|
|
}
|
|
}//for sugli edge del triangolo
|
|
}//se e' gia stato visitato
|
|
}//S & !S
|
|
}//!IsD()
|
|
}//for principale!!!
|
|
|
|
std::vector<tri::HoleInfo<MESH> >::iterator ith;
|
|
tri::HoleInfo<MESH> app;
|
|
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
|
|
{
|
|
app=(tri::HoleInfo<MESH>)*ith;
|
|
if(app.size < sizeHole){
|
|
//app.Refresh(m);//non so se serve
|
|
fillHoleEar<MESH, EAR >(m, app,UBIT);
|
|
}
|
|
}
|
|
|
|
for(fi = m.face.begin(); fi!=m.face.end(); ++fi)
|
|
{
|
|
if(!(*fi).IsD())
|
|
(*fi).ClearUserBit(UBIT);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Trivial Ear con preferred Normal
|
|
*/
|
|
template<class MSH_TYPE> class TrivialEarN : public TrivialEar<MSH_TYPE>
|
|
{
|
|
public:
|
|
|
|
TrivialEarN(){}
|
|
TrivialEarN(const face::Pos<typename MSH_TYPE::FaceType> & ep)
|
|
{
|
|
e0=ep;
|
|
assert(e0.IsBorder());
|
|
e1=e0;
|
|
e1.NextB();
|
|
ComputeQuality();
|
|
}
|
|
|
|
|
|
static typename MSH_TYPE::VertexType &PreferredNormal()
|
|
{
|
|
static MSH_TYPE::VertexType nn;
|
|
return nn;
|
|
}
|
|
|
|
void ComputeQuality(){
|
|
Point3d nn= -Normal( e0.VFlip()->P(), e0.v->P(), e1.v->P());
|
|
quality = Distance(e0.VFlip()->P(),e1.v->P());
|
|
if(nn*PreferredNormal() < -0.1)
|
|
quality*=1000000;
|
|
|
|
};
|
|
|
|
};
|
|
|
|
/* 2d Triangulation Code */
|
|
class Triangulate2D
|
|
{
|
|
|
|
static double Area(const vector<Point2d> &contour)
|
|
{
|
|
int n = contour.size();
|
|
|
|
double A=0.0f;
|
|
|
|
for(int p=n-1,q=0; q<n; p=q++) {
|
|
A+= contour[p].X()*contour[q].Y() - contour[q].X()*contour[p].Y();
|
|
}
|
|
return A*0.5f;
|
|
}
|
|
|
|
/*
|
|
InsideTriangle decides if a point P is Inside of the triangle
|
|
defined by A, B, C.
|
|
*/
|
|
static bool InsideTriangle(double Ax, double Ay,
|
|
double Bx, double By,
|
|
double Cx, double Cy,
|
|
double Px, double Py)
|
|
|
|
{
|
|
double ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
|
|
double cCROSSap, bCROSScp, aCROSSbp;
|
|
|
|
ax = Cx - Bx; ay = Cy - By;
|
|
bx = Ax - Cx; by = Ay - Cy;
|
|
cx = Bx - Ax; cy = By - Ay;
|
|
apx= Px - Ax; apy= Py - Ay;
|
|
bpx= Px - Bx; bpy= Py - By;
|
|
cpx= Px - Cx; cpy= Py - Cy;
|
|
|
|
aCROSSbp = ax*bpy - ay*bpx;
|
|
cCROSSap = cx*apy - cy*apx;
|
|
bCROSScp = bx*cpy - by*cpx;
|
|
|
|
return ((aCROSSbp >= 0.0f) && (bCROSScp >= 0.0f) && (cCROSSap >= 0.0f));
|
|
};
|
|
|
|
static bool Snip(const vector<Point2d> &contour,int u,int v,int w,int n,int *V)
|
|
{
|
|
int p;
|
|
double Ax, Ay, Bx, By, Cx, Cy, Px, Py;
|
|
const double epsilon =1e-2;
|
|
|
|
Ax = contour[V[u]].X();
|
|
Ay = contour[V[u]].Y();
|
|
|
|
Bx = contour[V[v]].X();
|
|
By = contour[V[v]].Y();
|
|
|
|
Cx = contour[V[w]].X();
|
|
Cy = contour[V[w]].Y();
|
|
|
|
if ( epsilon> (((Bx-Ax)*(Cy-Ay)) - ((By-Ay)*(Cx-Ax))) ) return false;
|
|
|
|
for (p=0;p<n;p++)
|
|
{
|
|
if( (p == u) || (p == v) || (p == w) ) continue;
|
|
Px = contour[V[p]].X();
|
|
Py = contour[V[p]].Y();
|
|
if (InsideTriangle(Ax,Ay,Bx,By,Cx,Cy,Px,Py)) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
public:
|
|
static bool Process(const vector<Point2d> &contour,vector<int> &result)
|
|
{
|
|
/* allocate and initialize list of Vertices in polygon */
|
|
|
|
int n = contour.size();
|
|
double area=Area(contour);
|
|
if ( n < 3 ) return false;
|
|
|
|
int *V = new int[n];
|
|
|
|
/* we want a counter-clockwise polygon in V */
|
|
|
|
if ( 0.0f < area ) for (int v=0; v<n; v++) V[v] = v;
|
|
else{
|
|
for(int v=0; v<n; v++) V[v] = (n-1)-v;
|
|
area=-area;
|
|
}
|
|
|
|
|
|
int nv = n;
|
|
|
|
/* remove nv-2 Vertices, creating 1 triangle every time */
|
|
int count = 2*nv; /* error detection */
|
|
|
|
double CurrBest= sqrt(area)/1000;
|
|
|
|
for(int m=0, v=nv-1; nv>2; )
|
|
{
|
|
count--;
|
|
/* if we loop, it is probably a non-simple polygon */
|
|
if( count<0)
|
|
{
|
|
CurrBest*=1.3;
|
|
count = 2*nv;
|
|
|
|
if(CurrBest > sqrt(area)*2)
|
|
return false;
|
|
}
|
|
|
|
/* three consecutive vertices in current polygon, <u,v,w> */
|
|
int u = v ; if (nv <= u) u = 0; /* previous */
|
|
v = u+1; if (nv <= v) v = 0; /* new v */
|
|
int w = v+1; if (nv <= w) w = 0; /* next */
|
|
|
|
if(Distance(contour[u],contour[w]) < CurrBest)
|
|
if ( Snip(contour,u,v,w,nv,V) )
|
|
{
|
|
int a,b,c,s,t;
|
|
|
|
/* true names of the vertices */
|
|
a = V[u]; b = V[v]; c = V[w];
|
|
|
|
/* output Triangle */
|
|
result.push_back( a );
|
|
result.push_back( b );
|
|
result.push_back( c );
|
|
|
|
m++;
|
|
|
|
/* remove v from remaining polygon */
|
|
for(s=v,t=v+1;t<nv;s++,t++) V[s] = V[t];
|
|
nv--;
|
|
|
|
/* resest error detection counter */
|
|
count = 2*nv;
|
|
}
|
|
}
|
|
|
|
delete V;
|
|
|
|
return true;
|
|
}
|
|
|
|
};
|
|
} // end namespace
|
|
}
|
|
#endif |