212 lines
10 KiB
C++
212 lines
10 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2009 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#include<vcg/complex/complex.h>
|
|
#include<vcg/complex/algorithms/create/platonic.h>
|
|
#include<wrap/io_trimesh/import_ply.h>
|
|
#include<wrap/io_trimesh/export_off.h>
|
|
#include<wrap/io_trimesh/export_ply.h>
|
|
#include<wrap/io_trimesh/export_dxf.h>
|
|
#include<vcg/complex/algorithms/point_sampling.h>
|
|
#include<vcg/complex/algorithms/voronoi_processing.h>
|
|
|
|
|
|
using namespace vcg;
|
|
using namespace std;
|
|
|
|
class MyEdge;
|
|
class MyFace;
|
|
class MyVertex;
|
|
struct MyUsedTypes : public UsedTypes< Use<MyVertex> ::AsVertexType,
|
|
Use<MyEdge> ::AsEdgeType,
|
|
Use<MyFace> ::AsFaceType>{};
|
|
|
|
class MyVertex : public Vertex<MyUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::VFAdj, vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{};
|
|
class MyFace : public Face< MyUsedTypes, face::VertexRef, face::Normal3f, face::BitFlags, face::Mark, face::VFAdj, face::FFAdj > {};
|
|
class MyEdge : public Edge< MyUsedTypes, edge::VertexRef, edge::BitFlags>{};
|
|
class MyMesh : public tri::TriMesh< vector<MyVertex>, vector<MyEdge>, vector<MyFace> > {};
|
|
|
|
class EmEdge;
|
|
class EmFace;
|
|
class EmVertex;
|
|
struct EmUsedTypes : public UsedTypes< Use<EmVertex> ::AsVertexType,
|
|
Use<EmEdge> ::AsEdgeType,
|
|
Use<EmFace> ::AsFaceType>{};
|
|
|
|
class EmVertex : public Vertex<EmUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::VFAdj , vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{};
|
|
class EmFace : public Face< EmUsedTypes, face::VertexRef, face::BitFlags, face::VFAdj > {};
|
|
class EmEdge : public Edge< EmUsedTypes, edge::VertexRef> {};
|
|
class EmMesh : public tri::TriMesh< vector<EmVertex>, vector<EmEdge>, vector<EmFace> > {};
|
|
|
|
|
|
int main( int argc, char **argv )
|
|
{
|
|
MyMesh baseMesh;
|
|
if(argc < 4 )
|
|
{
|
|
printf("Usage trimesh_voronoisampling mesh sampleNum iterNum\n");
|
|
return -1;
|
|
}
|
|
int sampleNum = atoi(argv[2]);
|
|
int iterNum = atoi(argv[3]);
|
|
|
|
bool fixCornerFlag=true;
|
|
bool uniformEdgeSamplingFlag = true;
|
|
|
|
printf("Reading %s and sampling %i points with %i iteration\n",argv[1],sampleNum,iterNum);
|
|
int ret= tri::io::ImporterPLY<MyMesh>::Open(baseMesh,argv[1]);
|
|
if(ret!=0)
|
|
{
|
|
printf("Unable to open %s for '%s'\n",argv[1],tri::io::ImporterPLY<MyMesh>::ErrorMsg(ret));
|
|
return -1;
|
|
}
|
|
|
|
tri::VoronoiProcessingParameter vpp;
|
|
|
|
tri::Clean<MyMesh>::RemoveUnreferencedVertex(baseMesh);
|
|
tri::Allocator<MyMesh>::CompactEveryVector(baseMesh);
|
|
tri::UpdateTopology<MyMesh>::VertexFace(baseMesh);
|
|
|
|
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskParam pp;
|
|
float radius = tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::ComputePoissonDiskRadius(baseMesh,sampleNum);
|
|
tri::VoronoiProcessing<MyMesh>::PreprocessForVoronoi(baseMesh,radius,vpp);
|
|
|
|
tri::UpdateFlags<MyMesh>::FaceBorderFromVF(baseMesh);
|
|
tri::UpdateFlags<MyMesh>::VertexBorderFromFaceBorder(baseMesh);
|
|
|
|
|
|
// -- Build a sampling with just corners (Poisson filtered)
|
|
MyMesh poissonCornerMesh;
|
|
std::vector<Point3f> sampleVec;
|
|
tri::TrivialSampler<MyMesh> mps(sampleVec);
|
|
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::VertexBorderCorner(baseMesh,mps,math::ToRad(150.f));
|
|
tri::BuildMeshFromCoordVector(poissonCornerMesh,sampleVec);
|
|
tri::io::ExporterPLY<MyMesh>::Save(poissonCornerMesh,"cornerMesh.ply");
|
|
sampleVec.clear();
|
|
MyMesh borderMesh,poissonBorderMesh;
|
|
|
|
|
|
if(uniformEdgeSamplingFlag)
|
|
{
|
|
|
|
}
|
|
else
|
|
{
|
|
if(fixCornerFlag)
|
|
{
|
|
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, poissonCornerMesh, radius, pp);
|
|
tri::BuildMeshFromCoordVector(poissonCornerMesh,sampleVec);
|
|
tri::io::ExporterPLY<MyMesh>::Save(poissonCornerMesh,"poissonCornerMesh.ply");
|
|
// Now save the corner as Fixed Seeds for later...
|
|
std::vector<MyVertex *> fixedSeedVec;
|
|
tri::VoronoiProcessing<MyMesh>::SeedToVertexConversion(baseMesh,sampleVec,fixedSeedVec);
|
|
tri::VoronoiProcessing<MyMesh, tri::EuclideanDistance<MyMesh> >::FixVertexVector(baseMesh,fixedSeedVec);
|
|
vpp.preserveFixedSeed=true;
|
|
}
|
|
|
|
// -- Build a sampling with points on the border
|
|
sampleVec.clear();
|
|
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::VertexBorder(baseMesh,mps);
|
|
tri::BuildMeshFromCoordVector(borderMesh,sampleVec);
|
|
tri::io::ExporterPLY<MyMesh>::Save(borderMesh,"borderMesh.ply");
|
|
|
|
// -- and then prune the border sampling with poisson strategy using the precomputed corner vertexes.
|
|
pp.preGenMesh = &poissonCornerMesh;
|
|
pp.preGenFlag=true;
|
|
sampleVec.clear();
|
|
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, borderMesh, radius*0.8f, pp);
|
|
tri::BuildMeshFromCoordVector(poissonBorderMesh,sampleVec);
|
|
}
|
|
|
|
tri::io::ExporterPLY<MyMesh>::Save(poissonBorderMesh,"PoissonEdgeMesh.ply");
|
|
|
|
// -- Build the montercarlo sampling of the surface
|
|
MyMesh MontecarloSurfaceMesh;
|
|
sampleVec.clear();
|
|
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::Montecarlo(baseMesh,mps,50000);
|
|
tri::BuildMeshFromCoordVector(MontecarloSurfaceMesh,sampleVec);
|
|
tri::io::ExporterPLY<MyMesh>::Save(MontecarloSurfaceMesh,"MontecarloSurfaceMesh.ply");
|
|
|
|
// -- Prune the montecarlo sampling with poisson strategy using the precomputed vertexes on the border.
|
|
pp.preGenMesh = &poissonBorderMesh;
|
|
sampleVec.clear();
|
|
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, MontecarloSurfaceMesh, radius, pp);
|
|
MyMesh PoissonMesh;
|
|
tri::BuildMeshFromCoordVector(PoissonMesh,sampleVec);
|
|
tri::io::ExporterPLY<MyMesh>::Save(PoissonMesh,"PoissonMesh.ply");
|
|
|
|
std::vector<MyVertex *> seedVec;
|
|
tri::VoronoiProcessing<MyMesh>::SeedToVertexConversion(baseMesh,sampleVec,seedVec);
|
|
|
|
// Select all the vertexes on the border to define a constrained domain.
|
|
// In our case we select the border vertexes to make sure that the seeds on the border
|
|
// relax themselves remaining on the border
|
|
for(size_t i=0;i<baseMesh.vert.size();++i){
|
|
if(baseMesh.vert[i].IsB())
|
|
baseMesh.vert[i].SetS();
|
|
}
|
|
|
|
// vpp.deleteUnreachedRegionFlag=true;
|
|
vpp.deleteUnreachedRegionFlag=false;
|
|
vpp.triangulateRegion = false;
|
|
vpp.geodesicRelaxFlag=false;
|
|
vpp.constrainSelectedSeed=true;
|
|
|
|
tri::EuclideanDistance<MyMesh> dd;
|
|
int t0=clock();
|
|
// And now, at last, the relaxing procedure!
|
|
int actualIter = tri::VoronoiProcessing<MyMesh, tri::EuclideanDistance<MyMesh> >::VoronoiRelaxing(baseMesh, seedVec, iterNum, dd, vpp);
|
|
int t1=clock();
|
|
|
|
MyMesh voroMesh, voroPoly, delaMesh;
|
|
// Get the result in some pleasant form converting it to a real voronoi diagram.
|
|
if(tri::VoronoiProcessing<MyMesh>::CheckVoronoiTopology(baseMesh,seedVec))
|
|
tri::VoronoiProcessing<MyMesh>::ConvertVoronoiDiagramToMesh(baseMesh,voroMesh,voroPoly,seedVec, vpp);
|
|
else
|
|
printf("WARNING some voronoi region are not disk like; the resulting delaunay triangulation is not manifold.\n");
|
|
|
|
tri::io::ExporterPLY<MyMesh>::Save(baseMesh,"base.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
|
|
tri::io::ExporterPLY<MyMesh>::Save(voroMesh,"voroMesh.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_FLAGS );
|
|
tri::io::ExporterPLY<MyMesh>::Save(voroPoly,"voroPoly.ply",tri::io::Mask::IOM_VERTCOLOR| tri::io::Mask::IOM_EDGEINDEX ,false);
|
|
|
|
tri::VoronoiProcessing<MyMesh>::ConvertDelaunayTriangulationToMesh(baseMesh,delaMesh, seedVec);
|
|
tri::io::ExporterPLY<MyMesh>::Save(delaMesh,"delaMesh.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
|
|
tri::VoronoiProcessing<MyMesh>::RelaxRefineTriangulationSpring(baseMesh,delaMesh,2,10);
|
|
tri::io::ExporterPLY<MyMesh>::Save(delaMesh,"delaMeshRef.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
|
|
|
|
|
|
// tri::io::ImporterPLY<MyMesh>::Open(baseMesh,argv[1]);
|
|
// tri::UpdateTopology<MyMesh>::VertexFace(baseMesh);
|
|
// tri::PoissonSampling<MyMesh>(baseMesh,pointVec,sampleNum,radius,radiusVariance);
|
|
// tri::VoronoiProcessing<MyMesh>::SeedToVertexConversion(baseMesh,pointVec,seedVec);
|
|
// tri::IsotropicDistance<MyMesh> id(baseMesh,radiusVariance);
|
|
// tri::VoronoiProcessing<MyMesh, tri::IsotropicDistance<MyMesh> >::VoronoiRelaxing(baseMesh, seedVec, iterNum,id,vpp);
|
|
// tri::VoronoiProcessing<MyMesh, tri::IsotropicDistance<MyMesh> >::ConvertVoronoiDiagramToMesh(baseMesh,outMesh,polyMesh,seedVec, id, vpp);
|
|
|
|
// tri::io::ExporterPLY<MyMesh>::Save(outMesh,"outW.ply",tri::io::Mask::IOM_VERTCOLOR );
|
|
// tri::io::ExporterPLY<MyMesh>::Save(polyMesh,"polyW.ply",tri::io::Mask::IOM_VERTCOLOR | tri::io::Mask::IOM_EDGEINDEX,false);
|
|
// tri::io::ExporterDXF<MyMesh>::Save(polyMesh,"outW.dxf");
|
|
printf("Completed! %i (%i) iterations in %f sec for %lu seeds \n",actualIter, iterNum,float(t1-t0)/CLOCKS_PER_SEC,seedVec.size());
|
|
return 0;
|
|
}
|