vcglib/apps/sample/trimesh_voronoisampling/trimesh_voronoisampling.cpp

212 lines
10 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2009 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#include<vcg/complex/complex.h>
#include<vcg/complex/algorithms/create/platonic.h>
#include<wrap/io_trimesh/import_ply.h>
#include<wrap/io_trimesh/export_off.h>
#include<wrap/io_trimesh/export_ply.h>
#include<wrap/io_trimesh/export_dxf.h>
#include<vcg/complex/algorithms/point_sampling.h>
#include<vcg/complex/algorithms/voronoi_processing.h>
using namespace vcg;
using namespace std;
class MyEdge;
class MyFace;
class MyVertex;
struct MyUsedTypes : public UsedTypes< Use<MyVertex> ::AsVertexType,
Use<MyEdge> ::AsEdgeType,
Use<MyFace> ::AsFaceType>{};
class MyVertex : public Vertex<MyUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::VFAdj, vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{};
class MyFace : public Face< MyUsedTypes, face::VertexRef, face::Normal3f, face::BitFlags, face::Mark, face::VFAdj, face::FFAdj > {};
class MyEdge : public Edge< MyUsedTypes, edge::VertexRef, edge::BitFlags>{};
class MyMesh : public tri::TriMesh< vector<MyVertex>, vector<MyEdge>, vector<MyFace> > {};
class EmEdge;
class EmFace;
class EmVertex;
struct EmUsedTypes : public UsedTypes< Use<EmVertex> ::AsVertexType,
Use<EmEdge> ::AsEdgeType,
Use<EmFace> ::AsFaceType>{};
class EmVertex : public Vertex<EmUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::VFAdj , vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{};
class EmFace : public Face< EmUsedTypes, face::VertexRef, face::BitFlags, face::VFAdj > {};
class EmEdge : public Edge< EmUsedTypes, edge::VertexRef> {};
class EmMesh : public tri::TriMesh< vector<EmVertex>, vector<EmEdge>, vector<EmFace> > {};
int main( int argc, char **argv )
{
MyMesh baseMesh;
if(argc < 4 )
{
printf("Usage trimesh_voronoisampling mesh sampleNum iterNum\n");
return -1;
}
int sampleNum = atoi(argv[2]);
int iterNum = atoi(argv[3]);
bool fixCornerFlag=true;
bool uniformEdgeSamplingFlag = true;
printf("Reading %s and sampling %i points with %i iteration\n",argv[1],sampleNum,iterNum);
int ret= tri::io::ImporterPLY<MyMesh>::Open(baseMesh,argv[1]);
if(ret!=0)
{
printf("Unable to open %s for '%s'\n",argv[1],tri::io::ImporterPLY<MyMesh>::ErrorMsg(ret));
return -1;
}
tri::VoronoiProcessingParameter vpp;
tri::Clean<MyMesh>::RemoveUnreferencedVertex(baseMesh);
tri::Allocator<MyMesh>::CompactEveryVector(baseMesh);
tri::UpdateTopology<MyMesh>::VertexFace(baseMesh);
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskParam pp;
float radius = tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::ComputePoissonDiskRadius(baseMesh,sampleNum);
tri::VoronoiProcessing<MyMesh>::PreprocessForVoronoi(baseMesh,radius,vpp);
tri::UpdateFlags<MyMesh>::FaceBorderFromVF(baseMesh);
tri::UpdateFlags<MyMesh>::VertexBorderFromFaceBorder(baseMesh);
// -- Build a sampling with just corners (Poisson filtered)
MyMesh poissonCornerMesh;
std::vector<Point3f> sampleVec;
tri::TrivialSampler<MyMesh> mps(sampleVec);
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::VertexBorderCorner(baseMesh,mps,math::ToRad(150.f));
tri::BuildMeshFromCoordVector(poissonCornerMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(poissonCornerMesh,"cornerMesh.ply");
sampleVec.clear();
MyMesh borderMesh,poissonBorderMesh;
if(uniformEdgeSamplingFlag)
{
}
else
{
if(fixCornerFlag)
{
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, poissonCornerMesh, radius, pp);
tri::BuildMeshFromCoordVector(poissonCornerMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(poissonCornerMesh,"poissonCornerMesh.ply");
// Now save the corner as Fixed Seeds for later...
std::vector<MyVertex *> fixedSeedVec;
tri::VoronoiProcessing<MyMesh>::SeedToVertexConversion(baseMesh,sampleVec,fixedSeedVec);
tri::VoronoiProcessing<MyMesh, tri::EuclideanDistance<MyMesh> >::FixVertexVector(baseMesh,fixedSeedVec);
vpp.preserveFixedSeed=true;
}
// -- Build a sampling with points on the border
sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::VertexBorder(baseMesh,mps);
tri::BuildMeshFromCoordVector(borderMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(borderMesh,"borderMesh.ply");
// -- and then prune the border sampling with poisson strategy using the precomputed corner vertexes.
pp.preGenMesh = &poissonCornerMesh;
pp.preGenFlag=true;
sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, borderMesh, radius*0.8f, pp);
tri::BuildMeshFromCoordVector(poissonBorderMesh,sampleVec);
}
tri::io::ExporterPLY<MyMesh>::Save(poissonBorderMesh,"PoissonEdgeMesh.ply");
// -- Build the montercarlo sampling of the surface
MyMesh MontecarloSurfaceMesh;
sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::Montecarlo(baseMesh,mps,50000);
tri::BuildMeshFromCoordVector(MontecarloSurfaceMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(MontecarloSurfaceMesh,"MontecarloSurfaceMesh.ply");
// -- Prune the montecarlo sampling with poisson strategy using the precomputed vertexes on the border.
pp.preGenMesh = &poissonBorderMesh;
sampleVec.clear();
tri::SurfaceSampling<MyMesh,tri::TrivialSampler<MyMesh> >::PoissonDiskPruning(mps, MontecarloSurfaceMesh, radius, pp);
MyMesh PoissonMesh;
tri::BuildMeshFromCoordVector(PoissonMesh,sampleVec);
tri::io::ExporterPLY<MyMesh>::Save(PoissonMesh,"PoissonMesh.ply");
std::vector<MyVertex *> seedVec;
tri::VoronoiProcessing<MyMesh>::SeedToVertexConversion(baseMesh,sampleVec,seedVec);
// Select all the vertexes on the border to define a constrained domain.
// In our case we select the border vertexes to make sure that the seeds on the border
// relax themselves remaining on the border
for(size_t i=0;i<baseMesh.vert.size();++i){
if(baseMesh.vert[i].IsB())
baseMesh.vert[i].SetS();
}
// vpp.deleteUnreachedRegionFlag=true;
vpp.deleteUnreachedRegionFlag=false;
vpp.triangulateRegion = false;
vpp.geodesicRelaxFlag=false;
vpp.constrainSelectedSeed=true;
tri::EuclideanDistance<MyMesh> dd;
int t0=clock();
// And now, at last, the relaxing procedure!
int actualIter = tri::VoronoiProcessing<MyMesh, tri::EuclideanDistance<MyMesh> >::VoronoiRelaxing(baseMesh, seedVec, iterNum, dd, vpp);
int t1=clock();
MyMesh voroMesh, voroPoly, delaMesh;
// Get the result in some pleasant form converting it to a real voronoi diagram.
if(tri::VoronoiProcessing<MyMesh>::CheckVoronoiTopology(baseMesh,seedVec))
tri::VoronoiProcessing<MyMesh>::ConvertVoronoiDiagramToMesh(baseMesh,voroMesh,voroPoly,seedVec, vpp);
else
printf("WARNING some voronoi region are not disk like; the resulting delaunay triangulation is not manifold.\n");
tri::io::ExporterPLY<MyMesh>::Save(baseMesh,"base.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
tri::io::ExporterPLY<MyMesh>::Save(voroMesh,"voroMesh.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_FLAGS );
tri::io::ExporterPLY<MyMesh>::Save(voroPoly,"voroPoly.ply",tri::io::Mask::IOM_VERTCOLOR| tri::io::Mask::IOM_EDGEINDEX ,false);
tri::VoronoiProcessing<MyMesh>::ConvertDelaunayTriangulationToMesh(baseMesh,delaMesh, seedVec);
tri::io::ExporterPLY<MyMesh>::Save(delaMesh,"delaMesh.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
tri::VoronoiProcessing<MyMesh>::RelaxRefineTriangulationSpring(baseMesh,delaMesh,2,10);
tri::io::ExporterPLY<MyMesh>::Save(delaMesh,"delaMeshRef.ply",tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY );
// tri::io::ImporterPLY<MyMesh>::Open(baseMesh,argv[1]);
// tri::UpdateTopology<MyMesh>::VertexFace(baseMesh);
// tri::PoissonSampling<MyMesh>(baseMesh,pointVec,sampleNum,radius,radiusVariance);
// tri::VoronoiProcessing<MyMesh>::SeedToVertexConversion(baseMesh,pointVec,seedVec);
// tri::IsotropicDistance<MyMesh> id(baseMesh,radiusVariance);
// tri::VoronoiProcessing<MyMesh, tri::IsotropicDistance<MyMesh> >::VoronoiRelaxing(baseMesh, seedVec, iterNum,id,vpp);
// tri::VoronoiProcessing<MyMesh, tri::IsotropicDistance<MyMesh> >::ConvertVoronoiDiagramToMesh(baseMesh,outMesh,polyMesh,seedVec, id, vpp);
// tri::io::ExporterPLY<MyMesh>::Save(outMesh,"outW.ply",tri::io::Mask::IOM_VERTCOLOR );
// tri::io::ExporterPLY<MyMesh>::Save(polyMesh,"polyW.ply",tri::io::Mask::IOM_VERTCOLOR | tri::io::Mask::IOM_EDGEINDEX,false);
// tri::io::ExporterDXF<MyMesh>::Save(polyMesh,"outW.dxf");
printf("Completed! %i (%i) iterations in %f sec for %lu seeds \n",actualIter, iterNum,float(t1-t0)/CLOCKS_PER_SEC,seedVec.size());
return 0;
}