vcglib/vcg/complex/algorithms/parametrization/distortion.h

295 lines
9.4 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_PARAM_DISTORTION
#define VCG_PARAM_DISTORTION
#include <vcg/complex/algorithms/parametrization/uv_utils.h>
namespace vcg {
namespace tri{
template <class MeshType, bool PerWedgeFlag>
class Distortion
{
public:
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
static ScalarType Area3D(const FaceType *f)
{
return DoubleArea(*f)*(0.5);
}
static ScalarType AreaUV(const FaceType *f)
{
Point2<ScalarType> uv0,uv1,uv2;
if(PerWedgeFlag) {
uv0=f->cWT(0).P();
uv1=f->cWT(1).P();
uv2=f->cWT(2).P();
} else {
uv0=f->cV(0)->T().P();
uv1=f->cV(1)->T().P();
uv2=f->cV(2)->T().P();
}
ScalarType AreaUV=((uv1-uv0)^(uv2-uv0))/2.0;
return AreaUV;
}
static ScalarType EdgeLenght3D(const FaceType *f,int e)
{
assert((e>=0)&&(e<3));
ScalarType length=(f->cP0(e)-f->cP1(e)).Norm();
return (length);
}
static ScalarType EdgeLenghtUV(const FaceType *f,int e)
{
assert((e>=0)&&(e<3));
Point2<ScalarType> uv0,uv1;
if(PerWedgeFlag) {
uv0=f->cWT(e+0).P();
uv1=f->cWT((e+1)%3).P();
} else {
uv0=f->cV0(e)->T().P();
uv1=f->cV1(e)->T().P();
}
ScalarType UVlength=Distance(uv0,uv1);
return UVlength;
}
static ScalarType AngleCos3D(const FaceType *f,int e)
{
assert((e>=0)&&(e<3));
CoordType p0=f->P((e+2)%3);
CoordType p1=f->P(e);
CoordType p2=f->P((e+1)%3);
typedef typename CoordType::ScalarType ScalarType;
CoordType dir0=p2-p1;
CoordType dir1=p0-p1;
dir0.Normalize();
dir1.Normalize();
ScalarType angle=dir0*dir1;
return angle;
}
static ScalarType AngleCosUV(const FaceType *f,int e)
{
Point2<ScalarType> uv0,uv1,uv2;
if(PerWedgeFlag) {
uv0=f->cWT((e+2)%3).P();
uv1=f->cWT((e+0)%3).P();
uv2=f->cWT((e+1)%3).P();
} else {
uv0=f->V2(e)->T().P();
uv1=f->V0(e)->T().P();
uv2=f->V1(e)->T().P();
}
vcg::Point2<ScalarType> dir0=uv2-uv1;
vcg::Point2<ScalarType> dir1=uv0-uv1;
dir0.Normalize();
dir1.Normalize();
ScalarType angle=dir0*dir1;
return angle;
}
static ScalarType AngleRad3D(const FaceType *f,int e)
{
assert((e>=0)&&(e<3));
CoordType p0=f->cP((e+2)%3);
CoordType p1=f->cP(e);
CoordType p2=f->cP((e+1)%3);
typedef typename CoordType::ScalarType ScalarType;
CoordType dir0=p2-p1;
CoordType dir1=p0-p1;
return Angle(dir0,dir1);
}
static ScalarType AngleRadUV(const FaceType *f,int e)
{
Point2<ScalarType> uv0,uv1,uv2;
if(PerWedgeFlag) {
uv0=f->cWT((e+2)%3).P();
uv1=f->cWT((e+0)%3).P();
uv2=f->cWT((e+1)%3).P();
} else {
uv0=f->cV2(e)->T().P();
uv1=f->cV0(e)->T().P();
uv2=f->cV1(e)->T().P();
}
vcg::Point2<ScalarType> dir0=uv2-uv1;
vcg::Point2<ScalarType> dir1=uv0-uv1;
dir0.Normalize();
dir1.Normalize();
ScalarType t=dir0*dir1;
if(t>1) t = 1;
else if(t<-1) t = -1;
return acos(t);
}
public:
enum DistType{AreaDist,EdgeDist,AngleDist};
///return the absolute difference between angle in 3D space and texture space
///Actually the difference in cos space
static ScalarType AngleCosDistortion(const FaceType *f,int e)
{
ScalarType Angle_3D=AngleCos3D(f,e);
ScalarType Angle_UV=AngleCosUV(f,e);
ScalarType diff=fabs(Angle_3D-Angle_UV);///Angle_3D;
return diff;
}
///return the absolute difference between angle in 3D space and texture space
///Actually the difference in cos space
static ScalarType AngleRadDistortion(const FaceType *f,int e)
{
ScalarType Angle_3D=AngleRad3D(f,e);
ScalarType Angle_UV=AngleRadUV(f,e);
ScalarType diff=fabs(Angle_3D-Angle_UV);///Angle_3D;
return diff;
}
///return the variance of angle, normalized
///in absolute value
static ScalarType AngleDistortion(const FaceType *f)
{
return AngleRadDistortion(f,0) +
AngleRadDistortion(f,1) +
AngleRadDistortion(f,2);
}
///return the global scaling factors from 3D to UV
static void MeshScalingFactor(const MeshType &m,
ScalarType &AreaScale,
ScalarType &EdgeScale)
{
ScalarType SumArea3D=0;
ScalarType SumArea2D=0;
ScalarType SumEdge3D=0;
ScalarType SumEdge2D=0;
for (int i=0;i<m.face.size();i++)
{
SumArea3D+=Area3D(&m.face[i]);
SumArea2D+=AreaUV(&m.face[i]);
for (int j=0;j<3;j++)
{
SumEdge3D+=EdgeLenght3D(&m.face[i],j);
SumEdge2D+=EdgeLenghtUV(&m.face[i],j);
}
}
AreaScale=SumArea3D/SumArea2D;
EdgeScale=SumEdge3D/SumEdge2D;
}
///return the variance of edge length, normalized in absolute value,
// the needed scaling factor EdgeScaleVal may be calculated
///by using the ScalingFactor function
static ScalarType EdgeDistortion(const FaceType *f,int e,
ScalarType EdgeScaleVal)
{
ScalarType edgeUV=EdgeLenghtUV(f,e)*EdgeScaleVal;
ScalarType edge3D=EdgeLenght3D(f,e);
assert(edge3D > 0);
ScalarType diff=fabs(edge3D-edgeUV)/edge3D;
assert(!math::IsNAN(diff));
return diff;
}
///return the variance of area, normalized
///in absolute value, the scalar AreaScaleVal may be calculated
///by using the ScalingFactor function
static ScalarType AreaDistortion(const FaceType *f,
ScalarType AreaScaleVal)
{
ScalarType areaUV=AreaUV(f)*AreaScaleVal;
ScalarType area3D=Area3D(f);
assert(area3D > 0);
ScalarType diff=fabs(areaUV-area3D)/area3D;
assert(!math::IsNAN(diff));
return diff;
}
///return the number of folded faces
static bool Folded(const FaceType *f)
{
ScalarType areaUV=AreaUV(f);
/*if (areaUV<0)
printf("area %5.5f \n",areaUV);*/
return (areaUV<0);
}
static int Folded(const MeshType &m)
{
int folded=0;
for (size_t i=0;i<m.face.size();i++)
{
if (m.face[i].IsD())continue;
if(Folded(&m.face[i]))folded++;
}
return folded;
}
static bool GloballyUnFolded(const MeshType &m)
{
int num=Folded(m);
return (num>(m.fn)/2);
}
static ScalarType MeshAngleDistortion(const MeshType &m)
{
ScalarType UDdist=0;
for (int i=0;i<m.face.size();i++)
{
if (m.face[i].IsD())continue;
const FaceType *f=&(m.face[i]);
UDdist+=AngleDistortion(f)*Area3D(f);
}
return UDdist;
}
static void SetQasDistorsion(MeshType &m,
DistType DType=AreaDist)
{
ScalarType edge_scale,area_scale;
MeshScalingFactor(m,area_scale,edge_scale);
for (int i=0;i<m.face.size();i++)
{
if (m.face[i].IsD())continue;
if (DType==AreaDist)
m.face[i].Q()=1-AreaDistortion(&m.face[i],area_scale);
else
if (DType==AngleDist)
m.face[i].Q()=1-AngleDistortion(&m.face[i]);
else
m.face[i].Q()=3-EdgeDistortion(&m.face[i],0,edge_scale)-
EdgeDistortion(&m.face[i],1,edge_scale)-
EdgeDistortion(&m.face[i],2,edge_scale);
}
}
};
}
}
#endif