vcglib/vcg/complex/algorithms/update/selection.h

510 lines
14 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_TRI_UPDATE_SELECTION
#define __VCG_TRI_UPDATE_SELECTION
#include <queue>
#include <vcg/complex/algorithms/update/flag.h>
namespace vcg {
namespace tri {
/// \ingroup trimesh
/// \brief A stack for saving and restoring selection.
/**
This class is used to save the current selection onto a stack for later use.
\todo it should be generalized to other attributes with a templated approach.
*/
template <class ComputeMeshType>
class SelectionStack
{
typedef typename ComputeMeshType::template PerVertexAttributeHandle< bool > vsHandle;
typedef typename ComputeMeshType::template PerEdgeAttributeHandle< bool > esHandle;
typedef typename ComputeMeshType::template PerFaceAttributeHandle< bool > fsHandle;
public:
SelectionStack(ComputeMeshType &m)
{
_m=&m;
}
bool push()
{
vsHandle vsH = Allocator<ComputeMeshType>::template AddPerVertexAttribute< bool >(*_m);
esHandle esH = Allocator<ComputeMeshType>::template AddPerEdgeAttribute< bool >(*_m);
fsHandle fsH = Allocator<ComputeMeshType>::template AddPerFaceAttribute< bool > (*_m);
typename ComputeMeshType::VertexIterator vi;
for(vi = _m->vert.begin(); vi != _m->vert.end(); ++vi)
if( !(*vi).IsD() ) vsH[*vi] = (*vi).IsS() ;
typename ComputeMeshType::EdgeIterator ei;
for(ei = _m->edge.begin(); ei != _m->edge.end(); ++ei)
if( !(*ei).IsD() ) esH[*ei] = (*ei).IsS() ;
typename ComputeMeshType::FaceIterator fi;
for(fi = _m->face.begin(); fi != _m->face.end(); ++fi)
if( !(*fi).IsD() ) fsH[*fi] = (*fi).IsS() ;
vsV.push_back(vsH);
esV.push_back(esH);
fsV.push_back(fsH);
return true;
}
bool pop()
{
if(vsV.empty()) return false;
vsHandle vsH = vsV.back();
esHandle esH = esV.back();
fsHandle fsH = fsV.back();
if(! (Allocator<ComputeMeshType>::template IsValidHandle(*_m, vsH))) return false;
typename ComputeMeshType::VertexIterator vi;
for(vi = _m->vert.begin(); vi != _m->vert.end(); ++vi)
if( !(*vi).IsD() )
{
if(vsH[*vi]) (*vi).SetS() ;
else (*vi).ClearS() ;
}
typename ComputeMeshType::EdgeIterator ei;
for(ei = _m->edge.begin(); ei != _m->edge.end(); ++ei)
if( !(*ei).IsD() )
{
if(esH[*ei]) (*ei).SetS() ;
else (*ei).ClearS() ;
}
typename ComputeMeshType::FaceIterator fi;
for(fi = _m->face.begin(); fi != _m->face.end(); ++fi)
if( !(*fi).IsD() )
{
if(fsH[*fi]) (*fi).SetS() ;
else (*fi).ClearS() ;
}
Allocator<ComputeMeshType>::template DeletePerVertexAttribute<bool>(*_m,vsH);
Allocator<ComputeMeshType>::template DeletePerEdgeAttribute<bool>(*_m,esH);
Allocator<ComputeMeshType>::template DeletePerFaceAttribute<bool>(*_m,fsH);
vsV.pop_back();
esV.pop_back();
fsV.pop_back();
return true;
}
private:
ComputeMeshType *_m;
std::vector<vsHandle> vsV;
std::vector<esHandle> esV;
std::vector<fsHandle> fsV;
};
/// \ingroup trimesh
/// \headerfile selection.h vcg/complex/algorithms/update/selection.h
/// \brief Management, updating and computation of per-vertex and per-face normals.
/**
This class is used to compute or update the normals that can be stored in the vertex or face component of a mesh.
*/
template <class ComputeMeshType>
class UpdateSelection
{
public:
typedef ComputeMeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename vcg::Box3<ScalarType> Box3Type;
static size_t VertexAll(MeshType &m)
{
VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( !(*vi).IsD() ) (*vi).SetS();
return m.vn;
}
static size_t EdgeAll(MeshType &m)
{
EdgeIterator ei;
for(ei = m.edge.begin(); ei != m.edge.end(); ++ei)
if( !(*ei).IsD() ) (*ei).SetS();
return m.fn;
}
static size_t FaceAll(MeshType &m)
{
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() ) (*fi).SetS();
return m.fn;
}
static size_t VertexClear(MeshType &m)
{
VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( !(*vi).IsD() ) (*vi).ClearS();
return 0;
}
static size_t EdgeClear(MeshType &m)
{
EdgeIterator ei;
for(ei = m.edge.begin(); ei != m.edge.end(); ++ei)
if( !(*ei).IsD() ) (*ei).ClearS();
return 0;
}
static size_t FaceClear(MeshType &m)
{
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() ) (*fi).ClearS();
return 0;
}
static void Clear(MeshType &m)
{
VertexClear(m);
EdgeClear(m);
FaceClear(m);
}
static size_t FaceCount(MeshType &m)
{
size_t selCnt=0;
FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD() && (*fi).IsS()) ++selCnt;
return selCnt;
}
static size_t EdgeCount(MeshType &m)
{
size_t selCnt=0;
EdgeIterator ei;
for(ei=m.edge.begin();ei!=m.edge.end();++ei)
if(!(*ei).IsD() && (*ei).IsS()) ++selCnt;
return selCnt;
}
static size_t VertexCount(MeshType &m)
{
size_t selCnt=0;
VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && (*vi).IsS()) ++selCnt;
return selCnt;
}
static size_t FaceInvert(MeshType &m)
{
size_t selCnt=0;
FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
if((*fi).IsS()) (*fi).ClearS();
else {
(*fi).SetS();
++selCnt;
}
}
return selCnt;
}
static size_t VertexInvert(MeshType &m)
{
size_t selCnt=0;
VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD())
{
if((*vi).IsS()) (*vi).ClearS();
else {
(*vi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief Select all the vertices that are touched by at least a single selected faces
static size_t VertexFromFaceLoose(MeshType &m, bool preserveSelection=false)
{
size_t selCnt=0;
if(!preserveSelection) VertexClear(m);
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() && (*fi).IsS())
{
if( !(*fi).V(0)->IsS()) { (*fi).V(0)->SetS(); ++selCnt; }
if( !(*fi).V(1)->IsS()) { (*fi).V(1)->SetS(); ++selCnt; }
if( !(*fi).V(2)->IsS()) { (*fi).V(2)->SetS(); ++selCnt; }
}
return selCnt;
}
/// \brief Select all the vertices that are touched by at least a single selected edge
static size_t VertexFromEdgeLoose(MeshType &m, bool preserveSelection=false)
{
size_t selCnt=0;
if(!preserveSelection) VertexClear(m);
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
if( !(*ei).IsD() && (*ei).IsS())
{
if( !(*ei).V(0)->IsS()) { (*ei).V(0)->SetS(); ++selCnt; }
if( !(*ei).V(1)->IsS()) { (*ei).V(1)->SetS(); ++selCnt; }
}
return selCnt;
}
/// \brief Select ONLY the vertices that are touched ONLY by selected faces
/** In other words all the vertices having all the faces incident on them selected.
\warning Isolated vertices will not selected.
*/
static size_t VertexFromFaceStrict(MeshType &m)
{
VertexFromFaceLoose(m);
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() && !(*fi).IsS())
{
(*fi).V(0)->ClearS();
(*fi).V(1)->ClearS();
(*fi).V(2)->ClearS();
}
return VertexCount(m);
}
/// \brief Select ONLY the faces with ALL the vertices selected
static size_t FaceFromVertexStrict(MeshType &m)
{
size_t selCnt=0;
FaceClear(m);
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD())
{
if((*fi).V(0)->IsS() && (*fi).V(1)->IsS() && (*fi).V(2)->IsS())
{
(*fi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief Select all the faces with at least one selected vertex
static size_t FaceFromVertexLoose(MeshType &m)
{
size_t selCnt=0;
FaceClear(m);
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() && !(*fi).IsS())
{
if((*fi).V(0)->IsS() || (*fi).V(1)->IsS() || (*fi).V(2)->IsS())
{
(*fi).SetS();
++selCnt;
}
}
return selCnt;
}
static size_t VertexFromBorderFlag(MeshType &m)
{
size_t selCnt=0;
VertexClear(m);
VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( !(*vi).IsD() )
{
if((*vi).IsB() )
{
(*vi).SetS();
++selCnt;
}
}
return selCnt;
}
static size_t FaceFromBorderFlag(MeshType &m)
{
size_t selCnt=0;
FaceClear(m);
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() )
{
if((*fi).IsB(0) || (*fi).IsB(1) || (*fi).IsB(2))
{
(*fi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief This function select the faces that have an edge outside the given range.
static size_t FaceOutOfRangeEdge(MeshType &m, ScalarType MinEdgeThr=0, ScalarType MaxEdgeThr=(std::numeric_limits<ScalarType>::max)())
{
FaceIterator fi;
size_t count_fd = 0;
MinEdgeThr=MinEdgeThr*MinEdgeThr;
MaxEdgeThr=MaxEdgeThr*MaxEdgeThr;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(unsigned int i=0;i<3;++i)
{
const ScalarType squaredEdge=SquaredDistance((*fi).V0(i)->cP(),(*fi).V1(i)->cP());
if((squaredEdge<=MinEdgeThr) || (squaredEdge>=MaxEdgeThr) )
{
count_fd++;
(*fi).SetS();
break; // skip the rest of the edges of the tri
}
}
}
return count_fd;
}
/// \brief This function expand current selection to cover the whole connected component.
static size_t FaceConnectedFF(MeshType &m)
{
// it also assumes that the FF adjacency is well computed.
assert (HasFFAdjacency(m));
UpdateFlags<MeshType>::FaceClearV(m);
std::deque<FacePointer> visitStack;
size_t selCnt=0;
FaceIterator fi;
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
if( !(*fi).IsD() && (*fi).IsS() && !(*fi).IsV() )
visitStack.push_back(&*fi);
while(!visitStack.empty())
{
FacePointer fp = visitStack.front();
visitStack.pop_front();
assert(!fp->IsV());
fp->SetV();
for(int i=0;i<3;++i) {
FacePointer ff = fp->FFp(i);
if(! ff->IsS())
{
ff->SetS();
++selCnt;
visitStack.push_back(ff);
assert(!ff->IsV());
}
}
}
return selCnt;
}
/// \brief Select ONLY the faces whose quality is in the specified closed interval.
static size_t FaceFromQualityRange(MeshType &m,float minq, float maxq)
{
size_t selCnt=0;
FaceClear(m);
FaceIterator fi;
assert(HasPerFaceQuality(m));
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
if( (*fi).Q()>=minq && (*fi).Q()<=maxq )
{
(*fi).SetS();
++selCnt;
}
}
return selCnt;
}
/// \brief Select ONLY the vertices whose quality is in the specified closed interval.
static size_t VertexFromQualityRange(MeshType &m,float minq, float maxq)
{
size_t selCnt=0;
VertexClear(m);
VertexIterator vi;
assert(HasPerVertexQuality(m));
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD())
{
if( (*vi).Q()>=minq && (*vi).Q()<=maxq )
{
(*vi).SetS();
++selCnt;
}
}
return selCnt;
}
static int VertexInBox( MeshType & m, const Box3Type &bb)
{
int selCnt=0;
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
{
if(bb.IsIn((*vi).cP()) ) {
(*vi).SetS();
++selCnt;
}
}
return selCnt;
}
void VertexNonManifoldEdges(MeshType &m)
{
assert(HasFFTopology(m));
VertexClear(m);
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD())
{
for(int i=0;i<3;++i)
if(!IsManifold(*fi,i)){
(*fi).V0(i)->SetS();
(*fi).V1(i)->SetS();
}
}
}
}; // end class
} // End namespace
} // End namespace
#endif