vcglib/vcg/complex/trimesh/bitquad_support.h

859 lines
23 KiB
C++

#include <vector>
#include <vcg/complex/trimesh/subset.h>
#include <vcg/simplex/face/jumping_pos.h>
#include <vcg/space/planar_polygon_tessellation.h>
/** BIT-QUAD creation support:
a few basic operations to work with bit-quads simplices
(quads defined by faux edges over a tri mesh backbone)
[ basic operations: ]
bool IsDoublet(const FaceType& f, int wedge)
void RemoveDoublet(FaceType &f, int wedge, MeshType& m)
- identifies and removed "Doublets" (pair of quads sharing two consecutive edges)
bool IsSinglet(const FaceType& f, int wedge)
void RemoveSinglet(FaceType &f, int wedge, MeshType& m)
void FlipDiag(FaceType &f)
- rotates the faux edge of a quad (quad only change internally)
bool RotateEdge(FaceType& f, int w0a);
- rotate a quad edge (clockwise or counterclockwise, specified via template)
bool RotateVertex(FaceType &f, int w0)
- rotate around a quad vertex ("wind-mill" operation)
void CollapseDiag(FaceType &f, ... p , MeshType& m)
- collapses a quad on its diagonal.
- p identifies the pos of collapsed point
(as either the parametric pos on the diagonal, or a fresh coordtype)
[ helper functions: ]
ScalarType quadQuality( ... );
- returns the quality for a given quad
- (should be made into a template parameter for methods using it)
- currently measures how squared each angle is
int FauxIndex(const FaceType* f);
- returns index of the only faux edge of a quad (otherwise, assert)
int CountBitPolygonInternalValency(const FaceType& f, int wedge)
- returns valency of vertex in terms of polygons (quads, tris...)
*/
// this must become a parameter in the corresponding class
#define DELETE_VERTICES 0
// let's not remove them after all...
// since TwoManyfold is weak, the vertex could still be used elsewhere...
namespace vcg{namespace tri{
/* simple geometric-interpolation mono-function class used
as a default template parameter to BitQuad class */
template <class VertexType>
class GeometricInterpolator{
public:
typedef typename VertexType::ScalarType ScalarType;
static void Apply( const VertexType &a, const VertexType &b, ScalarType t, VertexType &res){
assert (&a != &b);
res.P() = a.P()*(1-t) + b.P()*(t);
}
};
template <
// first template parameter: the tri mesh (with face-edges flagged)
class _MeshType,
// second template parameter: used to define interpolations between points
class Interpolator = GeometricInterpolator<typename _MeshType::VertexType>
>
class BitQuad{
public:
typedef _MeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FaceType* FaceTypeP;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::VertexIterator VertexIterator;
static void MarkFaceF(FaceType *f){
f->V(0)->SetS();
f->V(1)->SetS();
f->V(2)->SetS();
int i=FauxIndex(f);
f->FFp( i )->V2( f->FFi(i) )->SetS();
}
template <bool verse>
static bool RotateEdge(FaceType& f, int w0a){
FaceType *fa = &f;
assert(! fa->IsF(w0a) );
VertexType *v0, *v1;
v0= fa->V0(w0a);
v1= fa->V1(w0a);
int w1a = (w0a+1)%3;
int w2a = (w0a+2)%3;
FaceType *fb = fa->FFp(w0a);
MarkFaceF(fa);
MarkFaceF(fb);
int w0b = fa->FFi(w0a);
int w1b = (w0b+1)%3;
int w2b = (w0b+2)%3;
if (fa->IsF(w2a) == verse) {
if (!CheckFlipDiag(*fa)) return false;
FlipDiag(*fa);
// recover edge index, so that (f, w0a) identifies the same edge as before
FaceType *fc = fa->FFp(FauxIndex(fa));
for (int i=0; i<3; i++){
if ( v0==fa->V0(i) && v1==fa->V1(i) ) w0a = i;
if ( v0==fc->V0(i) && v1==fc->V1(i) ) { fa = fc; w0a = i; }
}
}
if (fb->IsF(w2b) == verse) {
if (!CheckFlipDiag(*fb)) return false;
FlipDiag(*fb);
}
if (!CheckFlipEdge(*fa,w0a)) return false;
FlipEdge(*fa,w0a);
return true;
}
/* small helper function which returns the index of the only
faux index, assuming there is exactly one (asserts out otherwise)
*/
static int FauxIndex(const FaceType* f){
if (f->IsF(0)) return 0;
if (f->IsF(1)) return 1;
assert(f->IsF(2));
return 2;
}
// rotates the diagonal of a quad
static void FlipDiag(FaceType &f){
int faux = FauxIndex(&f);
FaceType* fa = &f;
FaceType* fb = f.FFp(faux);
vcg::face::FlipEdge(f, faux);
// ripristinate faux flags
fb->ClearAllF();
fa->ClearAllF();
for (int k=0; k<3; k++) {
if (fa->FFp(k) == fb) fa->SetF(k);
if (fb->FFp(k) == fa) fb->SetF(k);
}
}
// given a vertex (i.e. a face and a wedge),
// this function tells us how the average edge lenght around a vertex would change
// if that vertex is rotated
static ScalarType AvgEdgeLenghtVariationIfVertexRotated(const FaceType &f, int w0)
{
assert(!f.IsD());
ScalarType
before=0, // sum of quad edges (originating from v)
after=0; // sum of quad diag (orginating from v)
int guard = 0;
// rotate arond vertex
const FaceType* pf = &f;
int pi = w0;
int n = 0; // vertex valency
int na = 0;
do {
ScalarType triEdge = (pf->P0(pi) - pf->P1(pi) ).Norm();
if (pf->IsF(pi)) { after += triEdge; na++;}
else { before+= triEdge; n++; }
if ( pf->IsF((pi+1)%3)) { after += CounterDiag( pf ).Norm(); na++; }
const FaceType *t = pf;
t = pf->FFp( pi );
if (pf == t ) return std::numeric_limits<ScalarType>::max(); // it's a mesh border! flee!
pi = pf->cFFi( pi );
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
pf = t;
assert(guard++<100);
} while (pf != &f);
assert (na == n);
return (after-before)/n;
}
/*
const FaceType* pf = &f;
int pi = wedge;
int res = 0, guard=0;
do {
if (!pf->IsAnyF()) return false; // there's a triangle!
if (!pf->IsF(pi)) res++;
const FaceType *t = pf;
t = pf->FFp( pi );
if (pf == t ) return false;
pi = pf->cFFi( pi );
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
pf = t;
assert(guard++<100);
} while (pf != &f);
*/
// given a vertex (i.e. a face and a wedge),
// this function tells us if it should be rotated or not
// (currently, we should iff it is shortened)
static bool TestVertexRotation(const FaceType &f, int w0)
{
assert(!f.IsD());
// rotate quad IFF this way edges become shorter:
return AvgEdgeLenghtVariationIfVertexRotated(f,w0)<0;
}
static bool RotateVertex(FaceType &f, int w0)
{
int guard = 0;
FaceType* pf = &f;
int pi = w0;
int n = 0; // vertex valency
if (pf->IsF((pi+2) % 3)) {
pi = (pi+2)%3;
// do one step back
int tmp = pf->FFi(pi); pf = pf->FFp(pi); pi = tmp; // flipF
}
const FaceType* stopA = pf;
const FaceType* stopB = pf->FFp(FauxIndex(pf));
// rotate around vertex, flipping diagonals if necessary,
do {
bool mustFlip;
if (pf->IsF(pi)) {
// if next edge is faux, move on other side of quad
int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF
mustFlip = false;
}
else {
mustFlip = true;
}
FaceType *lastF = pf;
int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF
if (mustFlip) {
if (!CheckFlipDiag(*lastF)) return false; // cannot flip??
FlipDiag(*lastF);
}
MarkFaceF(pf);
} while (pf != stopA && pf!= stopB);
// last pass: rotate arund vertex again, changing faux status
stopA=pf;
do {
int j = pi;
if (pf->IsF(j))
{ pf->ClearF(j); IncreaseValency(pf->V(j)); }
else
{ pf->SetF(j); DecreaseValency(pf->V(j)); }
j = (j+2)%3;
if (pf->IsF(j)) pf->ClearF(j); else pf->SetF(j);
int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF flipV
} while (pf != stopA );
return true;
}
// flips the faux edge of a quad
static void FlipEdge(FaceType &f, int k){
assert(!f.IsF(k));
FaceType* fa = &f;
FaceType* fb = f.FFp(k);
assert(fa!=fb); // else, rotating a border edge
// backup prev other-quads-halves
FaceType* fa2 = fa->FFp( FauxIndex(fa) );
FaceType* fb2 = fb->FFp( FauxIndex(fb) );
IncreaseValency( fa->V2(k) );
IncreaseValency( fb->V2(f.FFi(k)) );
DecreaseValency( fa->V0(k) );
DecreaseValency( fa->V1(k) );
vcg::face::FlipEdge(*fa, k);
// ripristinate faux flags
fb->ClearAllF();
fa->ClearAllF();
for (int k=0; k<3; k++) {
//if (fa->FFp(k) == fa2) fa->SetF(k);
//if (fb->FFp(k) == fb2) fb->SetF(k);
if (fa->FFp(k)->IsF( fa->FFi(k) )) fa->SetF(k);
if (fb->FFp(k)->IsF( fb->FFi(k) )) fb->SetF(k);
}
}
// check if a quad diagonal can be topologically flipped
static bool CheckFlipDiag(FaceType &f){
return (vcg::face::CheckFlipEdge(f, FauxIndex(&f) ) );
}
// given a face (part of a quad), returns its diagonal
static CoordType Diag(const FaceType* f){
int i = FauxIndex(f);
return f->P1( i ) - f->P0( i );
}
// given a face (part of a quad), returns other diagonal
static CoordType CounterDiag(const FaceType* f){
int i = FauxIndex(f);
return f->cP2( i ) - f->cFFp( i )->cP2(f->cFFi(i) ) ;
}
/* helper function:
collapses a single face along its faux edge.
Updates FF adj of other edges. */
static void _CollapseDiagHalf(FaceType &f, int faux, MeshType& m)
{
int faux1 = (faux+1)%3;
int faux2 = (faux+2)%3;
DecreaseValency(f.V2(faux)); // update valency
FaceType* fA = f.FFp( faux1 );
FaceType* fB = f.FFp( faux2 );
MarkFaceF(fA);
MarkFaceF(fB);
int iA = f.FFi( faux1 );
int iB = f.FFi( faux2 );
if (fA==&f && fB==&f) {
// both non-faux edges are borders: tri-face disappears, just remove the vertex
if (DELETE_VERTICES)
if (GetValency(f.V(faux2))==0)
Allocator<MeshType>::DeleteVertex(m,*(f.V(faux2)));
} else {
if (fA==&f) {
fB->FFp(iB) = fB; fB->FFi(iB) = iB;
} else {
fB->FFp(iB) = fA; fB->FFi(iB) = iA;
}
if (fB==&f) {
fA->FFp(iA) = fA; fA->FFi(iA) = iA;
} else {
fA->FFp(iA) = fB; fA->FFi(iA) = iB;
}
}
Allocator<MeshType>::DeleteFace(m,f);
}
static void RemoveDoublet(FaceType &f, int wedge, MeshType& m){
if (f.IsF((wedge+1)%3) ) {
VertexType *v = f.V(wedge);
FlipDiag(f);
// quick hack: recover wedge index after flip
if (f.V(0)==v) wedge = 0;
else if (f.V(1)==v) wedge = 1;
else {
assert(f.V(2)==v);
wedge = 2;
}
}
ScalarType k=(f.IsF(wedge))?1:0;
CollapseDiag(f, k, m);
VertexType *v = f.V(wedge);
}
static void RemoveSinglet(FaceType &f, int wedge, MeshType& m){
FaceType *fa, *fb; // these will die
FaceType *fc, *fd; // their former neight
fa = & f;
fb = fa->FFp(wedge);
int wa0 = wedge;
int wa1 = (wa0+1)%3 ;
int wa2 = (wa0+2)%3 ;
int wb0 = (fa->FFi(wa0)+1)%3;
int wb1 = (wb0+1)%3 ;
int wb2 = (wb0+2)%3 ;
assert (fb == fa->FFp( wa2 ) ); // otherwise, not a singlet
// valency decrease
DecreaseValency(fa->V(wa1));
DecreaseValency(fa->V(wa2));
if (fa->IsF(wa0)) {
DecreaseValency(fa->V(wa2)); // double decrease of valency
} else {
DecreaseValency(fa->V(wa1)); // double decrease of valency
}
// no need to MarkFaceF !
fc = fa->FFp(wa1);
fd = fb->FFp(wb1);
int wc = fa->FFi(wa1);
int wd = fb->FFi(wb1);
fc->FFp(wc) = fd;
fc->FFi(wc) = wd;
fd->FFp(wd) = fc;
fd->FFi(wd) = wc;
// faux status of survivors: unchanged
assert( ! ( fc->IsF( wc) ) );
assert( ! ( fd->IsF( wd) ) );
Allocator<MeshType>::DeleteFace( m,*fa );
Allocator<MeshType>::DeleteFace( m,*fb );
DecreaseValency(fa->V(wedge) );
if (DELETE_VERTICES)
if (GetValency(fa->V(wedge))==0) Allocator<MeshType>::DeleteVertex( m,*fa->V(wedge) );
}
static bool TestAndRemoveDoublet(FaceType &f, int wedge, MeshType& m){
if (IsDoublet(f,wedge)) {
RemoveDoublet(f,wedge,m);
return true;
}
return false;
}
static bool TestAndRemoveSinglet(FaceType &f, int wedge, MeshType& m){
if (IsSinglet(f,wedge)) {
RemoveSinglet(f,wedge,m);
return true;
}
return false;
}
// given a face and a wedge, counts its valency in terms of quads (and triangles)
// uses only FF, assumes twomanyfold
// returns -1 if border
static int CountBitPolygonInternalValency(const FaceType& f, int wedge){
const FaceType* pf = &f;
int pi = wedge;
int res = 0;
do {
if (!pf->IsF(pi)) res++;
const FaceType *t = pf;
t = pf->FFp( pi );
if (pf == t ) return -1;
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
pf = t;
} while (pf != &f);
return res;
}
// given a face and a wedge, returns if it host a doubet
// assumes tri and quad only. uses FF topology only.
static bool IsDoubletFF(const FaceType& f, int wedge){
const FaceType* pf = &f;
int pi = wedge;
int res = 0, guard=0;
do {
if (!pf->IsAnyF()) return false; // there's a triangle!
if (!pf->IsF(pi)) res++;
const FaceType *t = pf;
t = pf->FFp( pi );
if (pf == t ) return false;
pi = pf->cFFi( pi );
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
pf = t;
assert(guard++<100);
} while (pf != &f);
return (res == 2);
}
// version that uses vertex valency
static bool IsDoublet(const FaceType& f, int wedge){
return (GetValency( f.V(wedge)) == 2) && (!f.V(wedge)->IsB() ) ;
}
// given a face and a wedge, returns if it host a singlets
// assumes tri and quad only. uses FF topology only.
static bool IsSingletFF(const FaceType& f, int wedge){
const FaceType* pf = &f;
int pi = wedge;
int res = 0, guard=0;
do {
if (!pf->IsAnyF()) return false; // there's a triangle!
if (!pf->IsF(pi)) res++;
const FaceType *t = pf;
t = pf->FFp( pi );
if (pf == t ) return false;
pi = pf->cFFi( pi );
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
pf = t;
assert(guard++<100);
} while (pf != &f);
return (res == 1);
}
// version that uses vertex valency
static bool IsSinglet(const FaceType& f, int wedge){
return (GetValency( f.V(wedge) ) == 1) && (!f.V(wedge)->IsB() ) ;
}
static bool CollapseEdgeDirect(FaceType &f, int w0, MeshType& m){
FaceType * f0 = &f;
assert( !f0->IsF(w0) );
VertexType *v0, *v1;
v0 = f0->V0(w0);
v1 = f0->V1(w0);
if (!RotateVertex(*f0,w0)) return false;
// quick hack: recover original wedge
if (f0->V(0) == v0) w0 = 0;
else if (f0->V(1) == v0) w0 = 1;
else if (f0->V(2) == v0) w0 = 2;
else assert(0);
assert( f0->V1(w0) == v1 );
assert( f0->IsF(w0) );
CollapseDiag(*f0,PosOnDiag(*f0,false), m);
return true;
}
static bool CollapseEdge(FaceType &f, int w0, MeshType& m){
FaceTypeP f0 = &f;
assert(!f0->IsF(w0)); // don't use this method to collapse diag.
FaceTypeP f1 = f0->FFp(w0);
int w1 = f0->FFi(w0);
assert(f0!=f1); // can't collapse border edges!
// choose: rotate around V0 or around V1?
if (
AvgEdgeLenghtVariationIfVertexRotated(*f0,w0)
<
AvgEdgeLenghtVariationIfVertexRotated(*f1,w1)
) return CollapseEdgeDirect(*f0,w0,m);
else return CollapseEdgeDirect(*f1,w1,m);
}
/** collapses a quad diagonal a-b
forming the new vertex in between the two old vertices.
if k == 0, new vertex is in a
if k == 1, new vertex is in b
if k == 0.5, new vertex in the middle, etc
*/
static void CollapseCounterDiag(FaceType &f, ScalarType interpol, MeshType& m){
//CoordType p;
//int fauxa = FauxIndex(&f);
//p = f.V(fauxa)->P()*(1-k) + f.V( (fauxa+1)%3 )->P()*(k);
FlipDiag(f);
CollapseDiag(f,interpol,m);
}
/*
static void CollapseCounterDiag(FaceType &f, ScalarType k, MeshType& m){
CoordType p;
int fauxa = FauxIndex(&f);
p = f.P2(fauxa)*(1-k) + f.FFp( fauxa )->P2( f.FFi( fauxa ) )*(k);
CollapseCounterDiag(f,p,m);
}
*/
//static void CollapseCounterDiag(FaceType &f, const CoordType &p, MeshType& m){
// FlipDiag(f);
// CollapseDiag(f,p,m);
//}
static void CollapseDiag(FaceType &f, ScalarType interpol, MeshType& m){
FaceType* fa = &f;
int fauxa = FauxIndex(fa);
FaceType* fb = fa->FFp(fauxa);
assert (fb!=fa);
int fauxb = FauxIndex(fb);
VertexType* va = fa->V(fauxa); // va lives
VertexType* vb = fb->V(fauxb); // vb dies
Interpolator::Apply( *(f.V0(fauxa)), *(f.V1(fauxa)), interpol, *va);
// update FV...
bool border = false;
int pi = fauxb;
FaceType* pf = fb; /* pf, pi could be a Pos<FaceType> p(pf, pi) */
// rotate around vb, (same-sense-as-face)-wise
do {
pf->V(pi) = va;
pi=(pi+2)%3;
FaceType *t = pf->FFp(pi);
if (t==pf) { border= true; break; }
pi = pf->FFi(pi);
pf = t;
} while (pf!=fb);
// rotate around va, (counter-sense-as-face)-wise
if (border) {
int pi = fauxa;
FaceType* pf = fa; /* pf, pi could be a Pos<FaceType> p(pf, pi) */
do {
pi=(pi+1)%3;
pf->V(pi) = va;
FaceType *t = pf->FFp(pi);
if (t==pf) break;
pi = pf->FFi(pi);
pf = t;
} while (pf!=fb);
}
// update FF, delete faces
_CollapseDiagHalf(*fb, fauxb, m);
_CollapseDiagHalf(*fa, fauxa, m);
SetValency(va, GetValency(vb)+GetValency(va)-2);
SetValency(vb, GetValency(vb)+GetValency(va)-2);
if (DELETE_VERTICES) Allocator<MeshType>::DeleteVertex(m,*vb);
}
// helper function: find a good position on a diag to collapse a point
// currently, it is point in the middle,
// unless a mixed border-non border edge is collapsed, then it is an exreme
static ScalarType PosOnDiag(const FaceType& f, bool counterDiag){
bool b0, b1, b2, b3; // which side of the quads are border
const FaceType* fa=&f;
int ia = FauxIndex(fa);
const FaceType* fb=fa->cFFp(ia);
int ib = fa->cFFi(ia);
b0 = fa->FFp((ia+1)%3) == fa;
b1 = fa->FFp((ia+2)%3) == fa;
b2 = fb->FFp((ib+1)%3) == fb;
b3 = fb->FFp((ib+2)%3) == fb;
if (counterDiag) {
if ( (b0||b1) && !(b2||b3) ) return 1;
if ( !(b0||b1) && (b2||b3) ) return 0;
} else {
if ( (b1||b2) && !(b3||b0) ) return 0;
if ( !(b1||b2) && (b3||b0) ) return 1;
}
//if (f->FF( FauxIndex(f) )->IsB(
return 0.5f;
}
// trick! hide valency in flags
typedef enum { VALENCY_FLAGS = 24 } ___; // this bit and the 4 successive one are devoted to store valency
static void SetValency(VertexType *v, int n){
//v->Q() = n;
assert(n>=0 && n<=31);
v->Flags()&= ~(31<<VALENCY_FLAGS);
v->Flags()|= n<<VALENCY_FLAGS;
}
static int GetValency(const VertexType *v){
//return (int)(v->cQ());
return ( v->Flags() >> (VALENCY_FLAGS) ) & 31;
}
static void IncreaseValency(VertexType *v, int dv=1){
#ifdef NDEBUG
v->Flags() += dv<<VALENCY_FLAGS;
#else
SetValency( v, GetValency(v)+dv );
#endif
}
static int DecreaseValency(VertexType *v, int dv=1){
#ifdef NDEBUG
v->Flags() -= dv<<VALENCY_FLAGS;
#else
SetValency( v, GetValency(v)-dv );
#endif
}
static void UpdateValencyInFlags(MeshType& m){
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) {
SetValency(&*vi,0);
}
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
for (int w=0; w<3; w++)
if (!fi->IsF(w))
IncreaseValency( fi->V(w));
}
}
static void UpdateValencyInQuality(MeshType& m){
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) {
vi->Q() = 0;
}
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
for (int w=0; w<3; w++)
fi->V(w)->Q() += (fi->IsF(w)||fi->IsF((w+2)%3) )? 0.5f:1;
}
}
static bool HasConsistentValencyFlag(MeshType &m) {
UpdateValencyInFlags(m);
UpdateValencyInQuality(m);
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) {
if (GetValency(&*vi)!=vi->Q()) return false;
}
return true;
}
private:
// helper function:
// returns quality of a quad formed by points a,b,c,d
// quality is computed as "how squared angles are"
static ScalarType quadQuality(const CoordType &a, const CoordType &b, const CoordType &c, const CoordType &d){
ScalarType score = 0;
score += 1 - math::Abs( Cos( a,b,c) );
score += 1 - math::Abs( Cos( b,c,d) );
score += 1 - math::Abs( Cos( c,d,a) );
score += 1 - math::Abs( Cos( d,a,b) );
return score / 4;
}
// helper function:
// returns quality of a given (potential) quad
static ScalarType quadQuality(FaceType *f, int edge){
CoordType
a = f->V0(edge)->P(),
b = f->FFp(edge)->V2( f->FFi(edge) )->P(),
c = f->V1(edge)->P(),
d = f->V2(edge)->P();
return quadQuality(a,b,c,d);
}
/**
helper function:
given a quad edge, retruns:
0 if that edge should not be rotated
+1 if it should be rotated clockwise (+1)
-1 if it should be rotated counterclockwise (-1)
Currently an edge is rotated iff it is shortened by that rotations
(shortcut criterion)
*/
static int TestEdgeRotation(const FaceType &f, int w0)
{
const FaceType *fa = &f;
assert(! fa->IsF(w0) );
ScalarType q0,q1,q2;
CoordType v0,v1,v2,v3,v4,v5;
int w1 = (w0+1)%3;
int w2 = (w0+2)%3;
v0 = fa->P(w0);
v3 = fa->P(w1);
if (fa->IsF(w2) ) {
v1 = fa->cFFp(w2)->V2( fa->cFFi(w2) )->P();
v2 = fa->P(w2);
} else {
v1 = fa->P(w2);
v2 = fa->cFFp(w1)->V2( fa->cFFi(w1) )->P();
}
const FaceType *fb = fa->cFFp(w0);
w0 = fa->cFFi(w0);
w1 = (w0+1)%3;
w2 = (w0+2)%3;
if (fb->IsF(w2) ) {
v4 = fb->cFFp(w2)->V2( fb->cFFi(w2) )->P();
v5 = fb->P(w2);
} else {
v4 = fb->P(w2);
v5 = fb->cFFp(w1)->V2( fb->cFFi(w1) )->P();
}
/*
// max overall quality criterion:
q0 = quadQuality(v0,v1,v2,v3) + quadQuality(v3,v4,v5,v0); // keep as is?
q1 = quadQuality(v1,v2,v3,v4) + quadQuality(v4,v5,v0,v1); // rotate CW?
q2 = quadQuality(v5,v0,v1,v2) + quadQuality(v2,v3,v4,v5); // rotate CCW?
if (q0>=q1 && q0>=q2) return 0;
if (q1>=q2) return 1;*/
// min distance (shortcut criterion)
q0 = (v0 - v3).SquaredNorm();
q1 = (v1 - v4).SquaredNorm();
q2 = (v5 - v2).SquaredNorm();
if (q0<=q1 && q0<=q2) return 0;
if (q1<=q2) return 1;
return -1;
}
private:
// helper function:
// cos of angle abc. This should probably go elsewhere
static ScalarType Cos(const CoordType &a, const CoordType &b, const CoordType &c )
{
CoordType
e0 = b - a,
e1 = b - c;
ScalarType d = (e0.Norm()*e1.Norm());
if (d==0) return 0.0;
return (e0*e1)/d;
}
};
}} // end namespace vcg::tri