254 lines
6.8 KiB
C++
254 lines
6.8 KiB
C++
#ifndef __VCGLIB_HARMONIC_FIELD
|
|
#define __VCGLIB_HARMONIC_FIELD
|
|
|
|
#include <vcg/complex/complex.h>
|
|
#include <utility>
|
|
#include <vector>
|
|
#include <map>
|
|
|
|
#include <eigenlib/Eigen/Sparse>
|
|
|
|
namespace vcg {
|
|
namespace tri {
|
|
|
|
template <class MeshType, typename Scalar = double>
|
|
class Harmonic
|
|
{
|
|
public:
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
|
|
typedef double CoeffScalar;
|
|
|
|
typedef typename std::pair<VertexType *, Scalar> Constraint;
|
|
typedef typename std::vector<Constraint> ConstraintVec;
|
|
typedef typename ConstraintVec::const_iterator ConstraintIt;
|
|
|
|
/**
|
|
* @brief ComputeScalarField
|
|
* Generates a scalar harmonic field over the mesh.
|
|
* For more details see:\n Kai Xua, Hao Zhang, Daniel Cohen-Or, Yueshan Xionga,'Dynamic Harmonic Fields for Surface Processing'.\nin Computers & Graphics, 2009
|
|
* @param m the mesh
|
|
* @param constraints the Dirichlet boundary conditions in the form of vector of pairs <vertex pointer, value>.
|
|
* @param field the accessor to use to write the computed per-vertex values (must have the [ ] operator).
|
|
* @return true if the algorithm succeeds, false otherwise.
|
|
* @note the algorithm has unexpected behavior if the mesh contains unreferenced vertices.
|
|
*/
|
|
template <typename ACCESSOR>
|
|
static bool ComputeScalarField(MeshType & m, const ConstraintVec & constraints, ACCESSOR field)
|
|
{
|
|
typedef Eigen::SparseMatrix<CoeffScalar> SpMat; // sparse matrix type
|
|
typedef Eigen::Triplet<CoeffScalar> Triple; // triplet type to fill the matrix
|
|
|
|
RequirePerVertexFlags(m);
|
|
RequireCompactness(m);
|
|
RequireFFAdjacency(m);
|
|
|
|
if (constraints.empty())
|
|
return false;
|
|
|
|
int n = m.VN();
|
|
|
|
// Generate coefficients
|
|
std::vector<Triple> coeffs; // coefficients of the system
|
|
std::map<size_t,CoeffScalar> sums; // row sum of the coefficient matrix
|
|
|
|
vcg::tri::UpdateFlags<MeshType>::FaceClearV(m);
|
|
for (size_t i = 0; i < m.face.size(); ++i)
|
|
{
|
|
FaceType & f = m.face[i];
|
|
|
|
assert(!f.IsD());
|
|
assert(!f.IsV());
|
|
|
|
f.SetV();
|
|
|
|
// Generate coefficients for each edge
|
|
for (int edge = 0; edge < 3; ++edge)
|
|
{
|
|
CoeffScalar weight;
|
|
WeightInfo res = CotangentWeightIfNotVisited(f, edge, weight);
|
|
|
|
if (res == EdgeAlreadyVisited) continue;
|
|
assert(res == Success);
|
|
|
|
// Add the weight to the coefficients vector for both the vertices of the considered edge
|
|
size_t v0_idx = vcg::tri::Index(m, f.V0(edge));
|
|
size_t v1_idx = vcg::tri::Index(m, f.V1(edge));
|
|
|
|
coeffs.push_back(Triple(v0_idx, v1_idx, -weight));
|
|
coeffs.push_back(Triple(v1_idx, v0_idx, -weight));
|
|
|
|
// Add the weight to the row sum
|
|
sums[v0_idx] += weight;
|
|
sums[v1_idx] += weight;
|
|
}
|
|
}
|
|
|
|
// Setup the system matrix
|
|
SpMat laplaceMat; // the system to be solved
|
|
laplaceMat.resize(n, n); // eigen initializes it to zero
|
|
laplaceMat.reserve(coeffs.size());
|
|
for (std::map<size_t,CoeffScalar>::const_iterator it = sums.begin(); it != sums.end(); ++it)
|
|
{
|
|
coeffs.push_back(Triple(it->first, it->first, it->second));
|
|
}
|
|
laplaceMat.setFromTriplets(coeffs.begin(), coeffs.end());
|
|
|
|
|
|
// Setting the constraints
|
|
const CoeffScalar alpha = pow(10, 8); // penalty factor alpha
|
|
Eigen::Matrix<CoeffScalar, Eigen::Dynamic, 1> b, x; // Unknown and known terms vectors
|
|
b.setZero(n);
|
|
|
|
for (ConstraintIt it=constraints.begin(); it!=constraints.end(); it++)
|
|
{
|
|
size_t v_idx = vcg::tri::Index(m, it->first);
|
|
b(v_idx) = alpha * it->second;
|
|
laplaceMat.coeffRef(v_idx, v_idx) += alpha;
|
|
}
|
|
|
|
// Perform matrix decomposition
|
|
Eigen::SimplicialLDLT<SpMat> solver;
|
|
solver.compute(laplaceMat);
|
|
// TODO eventually use another solver (e.g. CHOLMOD for dynamic setups)
|
|
if(solver.info() != Eigen::Success)
|
|
{
|
|
// decomposition failed
|
|
switch (solver.info())
|
|
{
|
|
// possible errors
|
|
case Eigen::NumericalIssue :
|
|
case Eigen::NoConvergence :
|
|
case Eigen::InvalidInput :
|
|
default : return false;
|
|
}
|
|
}
|
|
|
|
// Solve the system: laplacianMat x = b
|
|
x = solver.solve(b);
|
|
if(solver.info() != Eigen::Success)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Set field value using the provided handle
|
|
for (size_t i = 0; int(i) < n; ++i)
|
|
{
|
|
field[i] = Scalar(x[i]);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
enum WeightInfo
|
|
{
|
|
Success = 0,
|
|
EdgeAlreadyVisited
|
|
};
|
|
|
|
|
|
/**
|
|
* @brief CotangentWeightIfNotVisited computes the cotangent weighting for an edge
|
|
* (if it has not be done yet).
|
|
* This must be ensured setting the visited flag on the face once all edge weights have been computed.
|
|
* @param f the face
|
|
* @param edge the edge of the provided face for which we compute the weight
|
|
* @param weight the computed weight (output)
|
|
* @return Success if everything is fine, EdgeAlreadyVisited if the weight
|
|
* for the considered edge has been already computed.
|
|
* @note the mesh must have the face-face topology updated
|
|
*/
|
|
template <typename ScalarT>
|
|
static WeightInfo CotangentWeightIfNotVisited(const FaceType &f, int edge, ScalarT & weight)
|
|
{
|
|
const FaceType * fp = f.cFFp(edge);
|
|
if (fp != NULL && fp != &f)
|
|
{
|
|
// not a border edge
|
|
if (fp->IsV()) return EdgeAlreadyVisited;
|
|
}
|
|
|
|
weight = CotangentWeight<ScalarT>(f, edge);
|
|
|
|
return Success;
|
|
}
|
|
|
|
/**
|
|
* @brief ComputeWeight computes the cotangent weighting for an edge
|
|
* @param f the face
|
|
* @param edge the edge of the provided face for which we compute the weight
|
|
* @return the computed weight
|
|
* @note the mesh must have the face-face topology updated
|
|
*/
|
|
template <typename ScalarT>
|
|
static ScalarT CotangentWeight(const FaceType &f, int edge)
|
|
{
|
|
assert(edge >= 0 && edge < 3);
|
|
|
|
// get the adjacent face
|
|
const FaceType * fp = f.cFFp(edge);
|
|
|
|
// v0
|
|
// /|\
|
|
// / | \
|
|
// / | \
|
|
// / | \
|
|
// va\ | /vb
|
|
// \ | /
|
|
// \ | /
|
|
// \|/
|
|
// v1
|
|
|
|
ScalarT cotA = 0;
|
|
ScalarT cotB = 0;
|
|
|
|
// Get the edge (a pair of vertices)
|
|
VertexType * v0 = f.cV0(edge);
|
|
VertexType * v1 = f.cV1(edge);
|
|
|
|
if (fp != NULL &&
|
|
fp != &f)
|
|
{
|
|
// not a border edge
|
|
VertexType * vb = fp->cV2(f.cFFi(edge));
|
|
ScalarT angleB = ComputeAngle<ScalarT>(v0, vb, v1);
|
|
cotB = vcg::math::Cos(angleB) / vcg::math::Sin(angleB);
|
|
}
|
|
|
|
VertexType * va = f.cV2(edge);
|
|
ScalarT angleA = ComputeAngle<ScalarT>(v0, va, v1);
|
|
cotA = vcg::math::Cos(angleA) / vcg::math::Sin(angleA);
|
|
|
|
return (cotA + cotB) / 2;
|
|
}
|
|
|
|
template <typename ScalarT>
|
|
static ScalarT ComputeAngle(const VertexType * a, const VertexType * b, const VertexType * c)
|
|
{
|
|
// a
|
|
// /
|
|
// /
|
|
// /
|
|
// / ___ compute the angle in b
|
|
// b \
|
|
// \
|
|
// \
|
|
// \
|
|
// c
|
|
assert(a != NULL && b != NULL && c != NULL);
|
|
Point3<ScalarT> A,B,C;
|
|
A.Import(a->P());
|
|
B.Import(b->P());
|
|
C.Import(c->P());
|
|
ScalarT angle = vcg::Angle(A - B, C - B);
|
|
return angle;
|
|
}
|
|
};
|
|
|
|
}
|
|
}
|
|
#endif // __VCGLIB_HARMONIC_FIELD
|