260 lines
7.6 KiB
C++
260 lines
7.6 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef _VCG_EDGE_TOPOLOGY
|
|
#define _VCG_EDGE_TOPOLOGY
|
|
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <vcg/simplex/edge/pos.h>
|
|
|
|
namespace vcg {
|
|
namespace edge {
|
|
/** \addtogroup edge */
|
|
/*@{*/template <class EdgeType>
|
|
inline bool IsEdgeManifoldFF( EdgeType const & e, const int j )
|
|
{
|
|
assert(e.cFFp(j) != 0); // never try to use this on uncomputed topology
|
|
|
|
if(EdgeType::HasFFAdjacency())
|
|
return ( e.cFFp(j) == &e || &e == e.cFFp(j)->cFFp(e.cFFi(j)) );
|
|
else
|
|
return true;
|
|
}
|
|
|
|
/** Return a boolean that indicate if the j-th edge of the face is a border.
|
|
@param j Index of the edge
|
|
@return true if j is an edge of border, false otherwise
|
|
*/
|
|
template <class EdgeType>
|
|
inline bool IsEdgeBorder(EdgeType const & e, const int j )
|
|
{
|
|
if(EdgeType::HasEEAdjacency())
|
|
return e.cEEp(j)==&e;
|
|
|
|
assert(0);
|
|
return true;
|
|
}
|
|
|
|
template <class VertexType>
|
|
void VVStarVE(const VertexType* vp, std::vector<VertexType *> &starVec)
|
|
{
|
|
starVec.clear();
|
|
edge::VEIterator<typename VertexType::EdgeType> vei(vp);
|
|
while(!vei.End())
|
|
{
|
|
starVec.push_back(vei.V1());
|
|
++vei;
|
|
}
|
|
}
|
|
|
|
template <class EdgeType>
|
|
void VEStarVE(const typename EdgeType::VertexType* vp, std::vector<EdgeType *> &starVec)
|
|
{
|
|
starVec.clear();
|
|
edge::VEIterator<EdgeType> vei(vp);
|
|
while(!vei.End())
|
|
{
|
|
starVec.push_back(vei.E());
|
|
++vei;
|
|
}
|
|
}
|
|
|
|
/// Completely detach an edge from the VE adjacency. Useful before deleting it
|
|
template <class EdgeType>
|
|
void VEDetach(EdgeType & e)
|
|
{
|
|
VEDetach(e,0);
|
|
VEDetach(e,1);
|
|
}
|
|
|
|
/// It detaches the given edge e from the VE adjacency on the vertex z
|
|
/// It is used for careful hand stictching of topologies.
|
|
template <class EdgeType>
|
|
void VEDetach(EdgeType & e, int z)
|
|
{
|
|
typename EdgeType::VertexType *vz = e.V(z); // the vertex from which the edge must be detached.
|
|
|
|
if(vz->VEp()==&e ) //if it is the first edge in the VE chain it detaches it from the begin
|
|
{
|
|
assert(vz->VEi() == z);
|
|
vz->VEp() = e.VEp(z);
|
|
vz->VEi() = e.VEi(z);
|
|
return;
|
|
}
|
|
else // scan the list of edges to find the current edge e to be detached
|
|
{
|
|
for( VEIterator<EdgeType> vei(vz);!vei.End();++vei)
|
|
{
|
|
if(vei.E()->VEp(vei.I()) == &e)
|
|
{
|
|
vei.e->VEp(vei.z) = e.VEp(z);
|
|
vei.e->VEi(vei.z) = e.VEi(z);
|
|
return;
|
|
}
|
|
}
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
/// Append an edge in the VE list of vertex e->V(z)
|
|
template <class EdgeType>
|
|
void VEAppend(EdgeType* e, int z)
|
|
{
|
|
typename EdgeType::VertexType *v = e->V(z);
|
|
if (v->VEp()!=0)
|
|
{
|
|
EdgeType *e0=v->VEp();
|
|
int z0=v->VEi();
|
|
//append
|
|
e->VEp(z)=e0;
|
|
e->VEi(z)=z0;
|
|
}
|
|
else
|
|
{
|
|
e->VEp(z)=0;
|
|
e->VEi(z)=-1;
|
|
}
|
|
v->VEp()=e;
|
|
v->VEi()=z;
|
|
}
|
|
|
|
|
|
/*! Perform a simple edge collapse using VE adjacency
|
|
*
|
|
* It collapses the two edges incidnent on the indicated vertex so that the passed edge survives,
|
|
* the indicated vertex is deleted, and the edge ajacent to e0 along z is deleted too.
|
|
* It assumes that the edge mesh is 1-Manifold.
|
|
* If the indicated vertex <vd> is boundary or non manifold the function do nothing.
|
|
*
|
|
* v0 vd v1
|
|
* ---O-------O-------O---
|
|
* z0 e0 z e1 z1
|
|
*
|
|
* v0 v1
|
|
* ---O---------------O---
|
|
* e0
|
|
*
|
|
*
|
|
*/
|
|
template <class MeshType>
|
|
void VEEdgeCollapse(MeshType &poly, typename MeshType::EdgeType *e0, const int z)
|
|
{
|
|
typedef typename MeshType::EdgeType EdgeType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
|
|
VertexType *vd = e0->V(z);
|
|
|
|
std::vector<EdgeType *> starVecEp;
|
|
edge::VEStarVE(vd,starVecEp);
|
|
if(starVecEp.size()!=2) return;
|
|
|
|
EdgeType *e1=0; // this edge will be deleted
|
|
if( starVecEp[0] == e0 ) e1 = starVecEp[1];
|
|
if( starVecEp[1] == e0 ) e1 = starVecEp[0];
|
|
assert(e1 && (e1!=e0) );
|
|
|
|
//int z0 = (z+1)%2;
|
|
int z1 = -1;
|
|
if(e1->V(0) == vd) z1=1;
|
|
if(e1->V(1) == vd) z1=0;
|
|
assert(z1!=-1);
|
|
|
|
VertexType *v1 = e1->V(z1);
|
|
assert(v1 != vd);
|
|
|
|
edge::VEDetach(*e1); // detach the edge to be deleted.
|
|
|
|
edge::VEDetach(*e0,z); // detach one side of the surviving edge
|
|
e0->V(z) = v1; // change one extreme of the edge
|
|
edge::VEAppend(e0, z); // attach it again.
|
|
|
|
tri::Allocator<MeshType>::DeleteEdge(poly,*e1);
|
|
tri::Allocator<MeshType>::DeleteVertex(poly,*vd);
|
|
}
|
|
|
|
template <class MeshType>
|
|
void VEEdgeCollapse(MeshType &poly, typename MeshType::VertexType *v)
|
|
{
|
|
VEEdgeCollapse(poly,v->VEp(),v->VEi());
|
|
}
|
|
/*! Perform a simple edge split using VE adjacency
|
|
*
|
|
*/
|
|
template <class MeshType>
|
|
void VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, typename MeshType::VertexType &v)
|
|
{
|
|
typename MeshType::VertexPointer v1 = e->V(1);
|
|
edge::VEDetach(*e,1);
|
|
e->V(1) = &v;
|
|
edge::VEAppend(e,1);
|
|
// tri::Allocator<MeshType>:: template PointerUpdater<typename MeshType::EdgePointer> pu;
|
|
typename MeshType::EdgeIterator ei = tri::Allocator<MeshType>::AddEdges(poly, 1);
|
|
ei->V(0)=&v;
|
|
ei->V(1)=v1;
|
|
edge::VEAppend(&*ei,0);
|
|
edge::VEAppend(&*ei,1);
|
|
}
|
|
|
|
template <class MeshType>
|
|
typename MeshType::VertexPointer VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, const typename MeshType::CoordType &p)
|
|
{
|
|
typename MeshType::VertexIterator vi = tri::Allocator<MeshType>::AddVertex(poly,p);
|
|
VEEdgeSplit(poly,e,*vi);
|
|
return &*vi;
|
|
}
|
|
|
|
template <class MeshType>
|
|
typename MeshType::VertexPointer VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, const typename MeshType::CoordType &p, const typename MeshType::CoordType &n)
|
|
{
|
|
typename MeshType::VertexIterator vi = tri::Allocator<MeshType>::AddVertex(poly,p,n);
|
|
VEEdgeSplit(poly,e,*vi);
|
|
return &*vi;
|
|
}
|
|
|
|
|
|
/*! Returns the number of incident edges over a vertex vp; Using the VE adjacency.
|
|
*
|
|
* It just follows the chain of incident edges of the VE adjacency.
|
|
*/
|
|
|
|
template <class EdgeType>
|
|
int VEDegree(const typename EdgeType::VertexType* vp)
|
|
{
|
|
int cnt=0;
|
|
edge::VEIterator<EdgeType> vei(vp);
|
|
while(!vei.End())
|
|
{
|
|
++cnt;
|
|
++vei;
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
|
|
} // end namespace edge
|
|
} // end namespace vcg
|
|
|
|
|
|
#endif
|