vcglib/vcg/complex/trimesh/create/extended_marching_cubes.h

465 lines
18 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/***************************************************************************/
#ifndef __VCG_EXTENDED_MARCHING_CUBES
#define __VCG_EXTENDED_MARCHING_CUBES
#include <float.h>
#include <assert.h>
#include <vector>
#include <vcg/math/base.h>
#include <vcg/math/matrix.h>
#include <vcg/math/lin_algebra.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/complex/trimesh/update/edges.h>
#include <vcg/complex/trimesh/update/normal.h>
#include <vcg/complex/trimesh/update/topology.h>
#include <vcg/complex/trimesh/allocate.h>
#include <vcg/space/point3.h>
#include "emc_lookup_table.h"
namespace vcg
{
namespace tri
{
// Doxygen documentation
/** \addtogroup trimesh */
/*@{*/
/*
* Cube description:
* 3 ________ 2 _____2__
* /| /| / | /|
* / | / | 11/ 3 10/ |
* 7 /_______ / | /__6_|__ / |1
* | | |6 | | | |
* | 0|__|_____|1 | |__|_0|__|
* | / | / 7 8/ 5 /
* | / | / | / | /9
* |/_______|/ |/___4___|/
* 4 5
*/
//! This class implements the Extended Marching Cubes algorithm.
/*!
* The implementation is enough generic: this class works only on one volume cell for each
* call to <CODE>ProcessCell</CODE>. Using the field value at the cell corners, it adds to the
* mesh the triangles set approximating the surface that cross that cell.
* @param TRIMESH_TYPE (Template parameter) the mesh type that will be constructed
* @param WALKER_TYPE (Template parameter) the class that implements the traversal ordering of the volume.
**/
template<class TRIMESH_TYPE, class WALKER_TYPE>
class ExtendedMarchingCubes
{
public:
#if defined(__GNUC__)
typedef unsigned int size_t;
#else
#ifdef _WIN64
typedef unsigned __int64 size_t;
#else
typedef _W64 unsigned int size_t;
#endif
#endif
typedef typename vcg::tri::Allocator< TRIMESH_TYPE > AllocatorType;
typedef typename TRIMESH_TYPE::ScalarType ScalarType;
typedef typename TRIMESH_TYPE::VertexType VertexType;
typedef typename TRIMESH_TYPE::VertexPointer VertexPointer;
typedef typename TRIMESH_TYPE::VertexIterator VertexIterator;
typedef typename TRIMESH_TYPE::FaceType FaceType;
typedef typename TRIMESH_TYPE::FacePointer FacePointer;
typedef typename TRIMESH_TYPE::FaceIterator FaceIterator;
typedef typename TRIMESH_TYPE::CoordType CoordType;
typedef typename TRIMESH_TYPE::CoordType* CoordPointer;
typedef struct
{
size_t face, edge;
} LightEdge;
/*!
* Constructor
* \param mesh The mesh that will be constructed
* \param volume The volume describing the field
* \param walker The class implementing the traversal policy
* \param angle The feature detection threshold misuring the sharpness of a feature(default is 30 degree)
*/
ExtendedMarchingCubes(TRIMESH_TYPE &mesh, WALKER_TYPE &walker, ScalarType angle=30)
{
_mesh = &mesh;
_walker = &walker;
_featureAngle = vcg::math::ToRad(angle);
_initialized = _finalized = false;
};
/*!
* Execute the initialiazation.
* This method must be executed before the first call to <CODE>ApplyEMC</CODE>
*/
void Initialize()
{
assert(!_initialized && !_finalized);
_featureFlag = VertexType::NewBitFlag();
_initialized = true;
};
/*!
*
* This method must be executed after the last call to <CODE>ApplyEMC</CODE>
*/
void Finalize()
{
assert(_initialized && !_finalized);
FlipEdges();
VertexIterator v_iter = _mesh->vert.begin();
VertexIterator v_end = _mesh->vert.end();
for ( ; v_iter!=v_end; v_iter++)
v_iter->ClearUserBit( _featureFlag );
VertexType::DeleteBitFlag( _featureFlag );
_featureFlag = 0;
_mesh = NULL;
_walker = NULL;
_finalized = true;
};
/*!
* Apply the <I>extended marching cubes</I> algorithm to the volume cell identified by the two points <CODE>min</CODE> and <CODE>max</CODE>.
* All the three coordinates of the first point must be smaller than the respectives three coordinatas of the second point.
* \param min the first point
* \param max the second point
*/
void ProcessCell(const vcg::Point3i &min, const vcg::Point3i &max)
{
assert(_initialized && !_finalized);
assert(min[0]<max[0] && min[1]<max[1] && min[2]<max[2]);
_corners[0].X()=min.X(); _corners[0].Y()=min.Y(); _corners[0].Z()=min.Z();
_corners[1].X()=max.X(); _corners[1].Y()=min.Y(); _corners[1].Z()=min.Z();
_corners[2].X()=max.X(); _corners[2].Y()=max.Y(); _corners[2].Z()=min.Z();
_corners[3].X()=min.X(); _corners[3].Y()=max.Y(); _corners[3].Z()=min.Z();
_corners[4].X()=min.X(); _corners[4].Y()=min.Y(); _corners[4].Z()=max.Z();
_corners[5].X()=max.X(); _corners[5].Y()=min.Y(); _corners[5].Z()=max.Z();
_corners[6].X()=max.X(); _corners[6].Y()=max.Y(); _corners[6].Z()=max.Z();
_corners[7].X()=min.X(); _corners[7].Y()=max.Y(); _corners[7].Z()=max.Z();
unsigned char cubetype = 0;
if ((_field[0] = _walker->V(_corners[0].X(), _corners[0].Y(), _corners[0].Z())) >= 0) cubetype+= 1;
if ((_field[1] = _walker->V(_corners[1].X(), _corners[1].Y(), _corners[1].Z())) >= 0) cubetype+= 2;
if ((_field[2] = _walker->V(_corners[2].X(), _corners[2].Y(), _corners[2].Z())) >= 0) cubetype+= 4;
if ((_field[3] = _walker->V(_corners[3].X(), _corners[3].Y(), _corners[3].Z())) >= 0) cubetype+= 8;
if ((_field[4] = _walker->V(_corners[4].X(), _corners[4].Y(), _corners[4].Z())) >= 0) cubetype+= 16;
if ((_field[5] = _walker->V(_corners[5].X(), _corners[5].Y(), _corners[5].Z())) >= 0) cubetype+= 32;
if ((_field[6] = _walker->V(_corners[6].X(), _corners[6].Y(), _corners[6].Z())) >= 0) cubetype+= 64;
if ((_field[7] = _walker->V(_corners[7].X(), _corners[7].Y(), _corners[7].Z())) >= 0) cubetype+=128;
if (cubetype==0 || cubetype==255)
return;
size_t vertices_idx[12];
memset(vertices_idx, -1, 12*sizeof(size_t));
int code = EMCLookUpTable::EdgeTable(cubetype);
VertexPointer vp = NULL;
if ( 1&code ) { _walker->GetXIntercept(_corners[0], _corners[1], vp); vertices_idx[ 0] = vp - &_mesh->vert[0]; }
if ( 2&code ) { _walker->GetYIntercept(_corners[1], _corners[2], vp); vertices_idx[ 1] = vp - &_mesh->vert[0]; }
if ( 4&code ) { _walker->GetXIntercept(_corners[3], _corners[2], vp); vertices_idx[ 2] = vp - &_mesh->vert[0]; }
if ( 8&code ) { _walker->GetYIntercept(_corners[0], _corners[3], vp); vertices_idx[ 3] = vp - &_mesh->vert[0]; }
if ( 16&code ) { _walker->GetXIntercept(_corners[4], _corners[5], vp); vertices_idx[ 4] = vp - &_mesh->vert[0]; }
if ( 32&code ) { _walker->GetYIntercept(_corners[5], _corners[6], vp); vertices_idx[ 5] = vp - &_mesh->vert[0]; }
if ( 64&code ) { _walker->GetXIntercept(_corners[7], _corners[6], vp); vertices_idx[ 6] = vp - &_mesh->vert[0]; }
if ( 128&code ) { _walker->GetYIntercept(_corners[4], _corners[7], vp); vertices_idx[ 7] = vp - &_mesh->vert[0]; }
if ( 256&code ) { _walker->GetZIntercept(_corners[0], _corners[4], vp); vertices_idx[ 8] = vp - &_mesh->vert[0]; }
if ( 512&code ) { _walker->GetZIntercept(_corners[1], _corners[5], vp); vertices_idx[ 9] = vp - &_mesh->vert[0]; }
if (1024&code ) { _walker->GetZIntercept(_corners[2], _corners[6], vp); vertices_idx[10] = vp - &_mesh->vert[0]; }
if (2048&code ) { _walker->GetZIntercept(_corners[3], _corners[7], vp); vertices_idx[11] = vp - &_mesh->vert[0]; }
int m, n, vertices_num;
int components = EMCLookUpTable::TriTable(cubetype, 1)[0]; //unsigned int components = triTable[cubetype][1][0];
int *indices = &EMCLookUpTable::TriTable(cubetype, 1)[components+1]; //int *indices = &EMCLookUpTable::TriTable(cubetype, 1, components+1);
std::vector< size_t > vertices_list;
for (m=1; m<=components; m++)
{
// current sheet contains vertices_num vertices
vertices_num = EMCLookUpTable::TriTable(cubetype, 1)[m]; //vertices_num = triTable[cubetype][1][m];
// collect vertices
vertices_list.clear();
for (n=0; n<vertices_num; ++n)
vertices_list.push_back( vertices_idx[ indices[n] ] );
VertexPointer feature = FindFeature( vertices_list );
if (feature != NULL) // i.e. is a valid vertex
{
// feature -> create triangle fan around feature vertex
size_t feature_idx = feature - &_mesh->vert[0];
size_t face_idx = _mesh->face.size();
vertices_list.push_back( vertices_list[0] );
AllocatorType::AddFaces(*_mesh, (int) vertices_num);
for (int j=0; j<vertices_num; ++j, face_idx++)
{
_mesh->face[face_idx].V(0) = &_mesh->vert[ vertices_list[j ] ];
_mesh->face[face_idx].V(1) = &_mesh->vert[ vertices_list[j+1] ];
_mesh->face[face_idx].V(2) = &_mesh->vert[ feature_idx ];
}
}
else
{
// no feature -> old marching cubes triangle table
for (int j=0; EMCLookUpTable::PolyTable(vertices_num, j) != -1; j+=3) //for (int j=0; polyTable[vertices_num][j] != -1; j+=3)
{
size_t face_idx = _mesh->face.size();
AllocatorType::AddFaces(*_mesh, 1);
//_mesh->face[ face_idx].V(0) = &_mesh->vert[ vertices_idx[ indices[ polyTable[vertices_num][j ] ] ] ];
//_mesh->face[ face_idx].V(1) = &_mesh->vert[ vertices_idx[ indices[ polyTable[vertices_num][j+1] ] ] ];
//_mesh->face[ face_idx].V(2) = &_mesh->vert[ vertices_idx[ indices[ polyTable[vertices_num][j+2] ] ] ];
_mesh->face[ face_idx].V(0) = &_mesh->vert[ vertices_idx[ indices[ EMCLookUpTable::PolyTable(vertices_num, j ) ] ] ];
_mesh->face[ face_idx].V(1) = &_mesh->vert[ vertices_idx[ indices[ EMCLookUpTable::PolyTable(vertices_num, j+1) ] ] ];
_mesh->face[ face_idx].V(2) = &_mesh->vert[ vertices_idx[ indices[ EMCLookUpTable::PolyTable(vertices_num, j+2) ] ] ];
}
}
indices += vertices_num;
}
}; // end of ApplyEMC
private:
/*!
*/
WALKER_TYPE *_walker;
/*!
*/
TRIMESH_TYPE *_mesh;
/*!
*/
bool _initialized;;
/*!
*/
bool _finalized;
/*!
* The feature detection threshold misuring the sharpness of a feature
*/
ScalarType _featureAngle;
/*!
* The flag used for marking the feature vertices.
*/
int _featureFlag;
/*!
* Array of the 8 corners of the volume cell being processed
*/
vcg::Point3i _corners[8];
/*!
* The field value at the cell corners
*/
ScalarType _field[8];
/*!
* Tests if the surface patch crossing the current cell contains a sharp feature
* \param vertices_idx The list of vertex indices intersecting the edges of the current cell
* \return The pointer to the new Vertex if a feature is detected; NULL otherwise.
*/
VertexPointer FindFeature(const std::vector<size_t> &vertices_idx)
{
unsigned int i, j, rank;
size_t vertices_num = (size_t) vertices_idx.size();
CoordType *points = new CoordType[ vertices_num ];
CoordType *normals = new CoordType[ vertices_num ];
for (i=0; i<vertices_num; i++)
{
points[i] = _mesh->vert[ vertices_idx[i] ].P();
normals[i] = _mesh->vert[ vertices_idx[i] ].N();
}
// move barycenter of points into (0, 0, 0)
CoordType center((ScalarType) 0.0, (ScalarType) 0.0, (ScalarType) 0.0);
for (i=0; i<vertices_num; ++i)
center += points[i];
center /= (ScalarType) vertices_num;
for (i=0; i<vertices_num; ++i)
points[i] -= center;
// normal angle criterion
double c, minC, maxC;
CoordType axis;
for (minC=1.0, i=0; i<vertices_num-1; ++i)
{
for (j=i+1; j<vertices_num; ++j)
{
c = normals[i]*normals[j];
if (c < minC)
{
minC = c;
axis = normals[i] ^ normals[j];
}
}
} //end for (minC=1.0, i=0; i<vertNumber; ++i)
if (minC > cos(_featureAngle))
return NULL; // invalid vertex
// ok, we have a feature: is it edge or corner, i.e. rank 2 or 3 ?
axis.Normalize();
for (minC=1.0, maxC=-1.0, i=0; i<vertices_num; ++i)
{
c = axis * normals[i];
if (c < minC) minC = c;
if (c > maxC) maxC = c;
}
c = vcg::math::Max< double >(fabs(minC), fabs(maxC));
c = sqrt(1.0-c*c);
rank = (c > cos(_featureAngle) ? 2 : 3);
// setup linear system (find intersection of tangent planes)
vcg::ndim::Matrix<double> A((unsigned int) vertices_num, 3);
double *b = new double[ vertices_num ];
for (i=0; i<vertices_num; ++i)
{
A[i][0] = normals[i][0];
A[i][1] = normals[i][1];
A[i][2] = normals[i][2];
b[i] = (points[i] * normals[i]);
}
// SVD of matrix A
vcg::ndim::Matrix<double> V(3, 3);
double *w = new double[vertices_num];
vcg::SingularValueDecomposition< typename vcg::ndim::Matrix<double> > (A, w, V, LeaveUnsorted, 100);
// rank == 2 -> suppress smallest singular value
if (rank == 2)
{
double smin = DBL_MAX; // the max value, as defined in <float.h>
unsigned int sminid = 0;
unsigned int srank = vcg::math::Min< unsigned int >(vertices_num, 3u);
for (i=0; i<srank; ++i)
{
if (w[i] < smin)
{
smin = w[i];
sminid = i;
}
}
w[sminid] = 0.0;
}
// SVD backsubstitution -> least squares, least norm solution x
double *x = new double[3];
vcg::SingularValueBacksubstitution< vcg::ndim::Matrix<double> >(A, w, V, x, b);
// transform x to world coords
CoordType point((ScalarType) x[0], (ScalarType) x[1], (ScalarType) x[2]);
point += center;
// insert the feature-point
VertexPointer mean_point = &*AllocatorType::AddVertices( *_mesh, 1);
mean_point->SetUserBit(_featureFlag);
mean_point->P() = point;
mean_point->N().Zero();
delete []x;
delete []points;
delete []normals;
return mean_point;
} // end of FindFeature
/*!
* Postprocessing step performed during the finalization tha flip some of the mesh edges.
* The flipping criterion is quite simple: each edge is flipped if it will connect two
* feature samples after the flip.
*/
void FlipEdges()
{
size_t i;
std::vector< LightEdge > edges;
FaceIterator f_iter = _mesh->face.begin();
FaceIterator f_end = _mesh->face.end();
for (i=0; f_iter!=f_end; f_iter++, i++)
{
if (f_iter->V(1) > f_iter->V(0))
{
LightEdge le;
le.face = i;
le.edge = 0;
edges.push_back( le );
}
if (f_iter->V(2) > f_iter->V(1))
{
LightEdge le;
le.face = i;
le.edge = 1;
edges.push_back( LightEdge(le));
}
if (f_iter->V(0) > f_iter->V(2))
{
LightEdge le;
le.face = i;
le.edge = 2;
edges.push_back( le );
}
}
vcg::tri::UpdateTopology< TRIMESH_TYPE >::VertexFace( *_mesh );
vcg::tri::UpdateTopology< TRIMESH_TYPE >::FaceFace( *_mesh );
typename std::vector< LightEdge >::iterator e_it = edges.begin();
typename std::vector< LightEdge >::iterator e_end = edges.end();
FacePointer g, f;
int w, z;
for( ; e_it!=e_end; e_it++)
{
f = &_mesh->face[e_it->face];
z = (int) e_it->edge;
if (vcg::face::CheckFlipEdge< FaceType >(*f, z))
{
VertexPointer v0, v1, v2, v3;
v0 = f->V(z);
v1 = f->V1(z);
v2 = f->V2(z);
g = f->FFp(z);
w = f->FFi(z);
v3 = g->V2(w);
bool b0, b1, b2, b3;
b0 = !v0->IsUserBit(_featureFlag);
b1 = !v1->IsUserBit(_featureFlag);
b2 = v2->IsUserBit(_featureFlag);
b3 = v3->IsUserBit(_featureFlag);
if( b0 && b1 && b2 && b3)
vcg::face::FlipEdge< FaceType >(*f, z);
} // end if (vcg::face::CheckFlipEdge< _Face >(*f, z))
} // end for( ; e_it!=e_end; e_it++)
}; //end of FlipEdges
}; // end of class ExtendedMarchingCubes
// /*! @} */
// end of Doxygen documentation
} // end of namespace tri
}; // end of namespace vcg
#endif // __VCG_EXTENDED_MARCHING_CUBES