QuaPy/quapy/data/_ifcb.py

105 lines
3.5 KiB
Python
Raw Normal View History

2023-11-08 11:07:47 +01:00
import os
import pandas as pd
2024-02-07 18:45:42 +01:00
import math
2024-02-12 12:39:18 +01:00
from quapy.data import LabelledCollection
2024-02-07 18:45:42 +01:00
from quapy.protocol import AbstractProtocol
from pathlib import Path
2024-02-08 14:33:22 +01:00
2024-02-07 18:45:42 +01:00
def get_sample_list(path_dir):
"""Gets a sample list finding the csv files in a directory
Args:
path_dir (_type_): directory to look for samples
Returns:
_type_: list of samples
"""
samples = []
for filename in sorted(os.listdir(path_dir)):
if filename.endswith('.csv'):
samples.append(filename)
return samples
2024-02-08 14:33:22 +01:00
2024-02-07 18:45:42 +01:00
def generate_modelselection_split(samples, split=0.3):
"""This function generates a train/test split for model selection
without the use of random numbers so the split is always the same
Args:
samples (_type_): list of samples
split (float, optional): percentage saved for test. Defaults to 0.3.
Returns:
_type_: list of samples to use as train and list of samples to use as test
"""
num_items_to_pick = math.ceil(len(samples) * split)
step_size = math.floor(len(samples) / num_items_to_pick)
test_indices = [i * step_size for i in range(num_items_to_pick)]
test = [samples[i] for i in test_indices]
train = [item for i, item in enumerate(samples) if i not in test_indices]
return train, test
2024-02-08 14:33:22 +01:00
2024-02-07 18:45:42 +01:00
class IFCBTrainSamplesFromDir(AbstractProtocol):
def __init__(self, path_dir:str, classes: list, samples: list = None):
self.path_dir = path_dir
self.classes = classes
self.samples = []
if samples is not None:
self.samples = samples
else:
self.samples = get_sample_list(path_dir)
2023-11-08 11:07:47 +01:00
def __call__(self):
for sample in self.samples:
s = pd.read_csv(os.path.join(self.path_dir,sample))
# all columns but the first where we get the class
X = s.iloc[:, 1:].to_numpy()
y = s.iloc[:, 0].to_numpy()
2024-02-12 12:39:18 +01:00
yield LabelledCollection(X, y, classes=self.classes)
2023-11-08 11:07:47 +01:00
def total(self):
"""
Returns the total number of samples that the protocol generates.
:return: The number of training samples to generate.
"""
return len(self.samples)
2024-02-08 14:33:22 +01:00
2024-02-07 18:45:42 +01:00
class IFCBTestSamples(AbstractProtocol):
def __init__(self, path_dir:str, test_prevalences: pd.DataFrame, samples: list = None, classes: list=None):
self.path_dir = path_dir
self.test_prevalences = test_prevalences
self.classes = classes
if samples is not None:
self.samples = samples
else:
self.samples = get_sample_list(path_dir)
def __call__(self):
for test_sample in self.samples:
s = pd.read_csv(os.path.join(self.path_dir,test_sample))
if self.test_prevalences is not None:
X = s
# If we are working with the test samples, we have a dataframe with the prevalences and no labels for the test
prevalences = self.test_prevalences.loc[self.test_prevalences['sample']==Path(test_sample).stem].to_numpy()[:,1:].flatten().astype(float)
else:
X = s.iloc[:, 1:].to_numpy()
y = s.iloc[:,0]
# In this case we compute the sample prevalences from the labels
prevalences = y[y.isin(self.classes)].value_counts().reindex(self.classes, fill_value=0).to_numpy()/len(s)
yield X, prevalences
def total(self):
"""
Returns the total number of samples that the protocol generates.
2024-02-07 18:45:42 +01:00
:return: The number of training samples to generate.
"""
return len(self.samples)