105 lines
3.5 KiB
Python
105 lines
3.5 KiB
Python
import os
|
|
import pandas as pd
|
|
import math
|
|
|
|
from quapy.data import LabelledCollection
|
|
from quapy.protocol import AbstractProtocol
|
|
from pathlib import Path
|
|
|
|
|
|
def get_sample_list(path_dir):
|
|
"""Gets a sample list finding the csv files in a directory
|
|
|
|
Args:
|
|
path_dir (_type_): directory to look for samples
|
|
|
|
Returns:
|
|
_type_: list of samples
|
|
"""
|
|
samples = []
|
|
for filename in sorted(os.listdir(path_dir)):
|
|
if filename.endswith('.csv'):
|
|
samples.append(filename)
|
|
return samples
|
|
|
|
|
|
def generate_modelselection_split(samples, split=0.3):
|
|
"""This function generates a train/test split for model selection
|
|
without the use of random numbers so the split is always the same
|
|
|
|
Args:
|
|
samples (_type_): list of samples
|
|
split (float, optional): percentage saved for test. Defaults to 0.3.
|
|
|
|
Returns:
|
|
_type_: list of samples to use as train and list of samples to use as test
|
|
"""
|
|
num_items_to_pick = math.ceil(len(samples) * split)
|
|
step_size = math.floor(len(samples) / num_items_to_pick)
|
|
test_indices = [i * step_size for i in range(num_items_to_pick)]
|
|
test = [samples[i] for i in test_indices]
|
|
train = [item for i, item in enumerate(samples) if i not in test_indices]
|
|
return train, test
|
|
|
|
|
|
class IFCBTrainSamplesFromDir(AbstractProtocol):
|
|
|
|
def __init__(self, path_dir:str, classes: list, samples: list = None):
|
|
self.path_dir = path_dir
|
|
self.classes = classes
|
|
self.samples = []
|
|
if samples is not None:
|
|
self.samples = samples
|
|
else:
|
|
self.samples = get_sample_list(path_dir)
|
|
|
|
def __call__(self):
|
|
for sample in self.samples:
|
|
s = pd.read_csv(os.path.join(self.path_dir,sample))
|
|
# all columns but the first where we get the class
|
|
X = s.iloc[:, 1:].to_numpy()
|
|
y = s.iloc[:, 0].to_numpy()
|
|
yield LabelledCollection(X, y, classes=self.classes)
|
|
|
|
def total(self):
|
|
"""
|
|
Returns the total number of samples that the protocol generates.
|
|
|
|
:return: The number of training samples to generate.
|
|
"""
|
|
return len(self.samples)
|
|
|
|
|
|
class IFCBTestSamples(AbstractProtocol):
|
|
|
|
def __init__(self, path_dir:str, test_prevalences: pd.DataFrame, samples: list = None, classes: list=None):
|
|
self.path_dir = path_dir
|
|
self.test_prevalences = test_prevalences
|
|
self.classes = classes
|
|
if samples is not None:
|
|
self.samples = samples
|
|
else:
|
|
self.samples = get_sample_list(path_dir)
|
|
|
|
def __call__(self):
|
|
for test_sample in self.samples:
|
|
s = pd.read_csv(os.path.join(self.path_dir,test_sample))
|
|
if self.test_prevalences is not None:
|
|
X = s
|
|
# If we are working with the test samples, we have a dataframe with the prevalences and no labels for the test
|
|
prevalences = self.test_prevalences.loc[self.test_prevalences['sample']==Path(test_sample).stem].to_numpy()[:,1:].flatten().astype(float)
|
|
else:
|
|
X = s.iloc[:, 1:].to_numpy()
|
|
y = s.iloc[:,0]
|
|
# In this case we compute the sample prevalences from the labels
|
|
prevalences = y[y.isin(self.classes)].value_counts().reindex(self.classes, fill_value=0).to_numpy()/len(s)
|
|
yield X, prevalences
|
|
|
|
def total(self):
|
|
"""
|
|
Returns the total number of samples that the protocol generates.
|
|
|
|
:return: The number of training samples to generate.
|
|
"""
|
|
return len(self.samples)
|