Merge branch 'kdey2' of gitea-s2i2s.isti.cnr.it:moreo/QuaPy into kdey2

This commit is contained in:
Alejandro Moreo Fernandez 2024-09-27 10:20:26 +02:00
commit 3686e820fe
3 changed files with 272 additions and 265 deletions

View File

@ -17,6 +17,8 @@ import quapy.functional as F
epsilon = 1e-10
BANDWIDTH_RANGE = (0.001, 0.2)
class KDEyMLauto(KDEyML):
def __init__(self, classifier: BaseEstimator = None, val_split=5, random_state=None, optim='two_steps'):
self.classifier = qp._get_classifier(classifier)
@ -218,7 +220,7 @@ class KDEyMLauto(KDEyML):
def choose_bandwidth_maxlikelihood_search(self, tr_posteriors, tr_y, te_posteriors, classes):
n_classes = len(classes)
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
init_prev = F.uniform_prevalence(n_classes)
def neglikelihood_band(bandwidth):
mix_densities = self.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth[0])
@ -258,7 +260,7 @@ def optim_minimize(loss: Callable, init_prev: np.ndarray, return_loss=False):
constraints = ({'type': 'eq', 'fun': lambda x: 1 - sum(x)}) # values summing up to 1
r = optimize.minimize(loss, x0=init_prev, method='SLSQP', bounds=bounds, constraints=constraints)
# print(f'iterations-prevalence={r.nit}')
assert r.success, 'Process did not converge!'
# assert r.success, 'Process did not converge!'
if return_loss:
return r.x, r.fun
else:
@ -268,7 +270,7 @@ def optim_minimize(loss: Callable, init_prev: np.ndarray, return_loss=False):
class KDEyMLauto2(KDEyML):
def __init__(self, classifier: BaseEstimator=None, val_split=5, bandwidth=0.1, random_state=None, reduction=100, max_reduced=500, target='likelihood'):
def __init__(self, classifier: BaseEstimator=None, val_split=5, bandwidth=0.1, random_state=None, reduction=100, max_reduced=500, target='likelihood', search='grid'):
"""
reduction: number of examples per class for automatically setting the bandwidth
"""
@ -281,8 +283,10 @@ class KDEyMLauto2(KDEyML):
self.reduction = reduction
self.max_reduced = max_reduced
self.random_state = random_state
assert target in ['likelihood', 'likelihood+'] or target in qp.error.QUANTIFICATION_ERROR_NAMES, 'unknown target for auto'
assert target in ['likelihood'] or target in qp.error.QUANTIFICATION_ERROR_NAMES, 'unknown target for auto'
assert search in ['grid', 'optim'], 'unknown value for search'
self.target = target
self.search = search
def aggregation_fit(self, classif_predictions: LabelledCollection, data: LabelledCollection):
if self.bandwidth == 'auto':
@ -303,65 +307,42 @@ class KDEyMLauto2(KDEyML):
if len(train) > tr_length:
train = train.sampling(tr_length)
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
init_prev = F.uniform_prevalence(n_classes=n_classes)
repeats = 25
prot = UPP(val, sample_size=self.reduction, repeats=repeats, random_state=self.random_state)
if self.target == 'likelihood+':
def eval_bandwidth(bandwidth):
mix_densities = self.get_mixture_components(*train.Xy, train.classes_, bandwidth)
loss_accum = 0
for (sample, prevtrue) in prot():
test_densities = [self.pdf(kde_i, sample) for kde_i in mix_densities]
def neg_loglikelihood_bandwidth(bandwidth):
mix_densities = self.get_mixture_components(*train.Xy, train.classes_, bandwidth)
def neg_loglikelihood_prev(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
nll = -np.sum(test_loglikelihood)
return nll
loss_accum = 0
for (sample, prevtrue) in prot():
test_densities = [self.pdf(kde_i, sample) for kde_i in mix_densities]
if self.target == 'likelihood':
loss_fn = neg_loglikelihood_prev
else:
loss_fn = lambda prev_hat: qp.error.from_name(self.target)(prev, prev_hat)
def neg_loglikelihood_prev(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
nll = -np.sum(test_loglikelihood)
return nll
pred_prev, neglikelihood = optim_minimize(loss_fn, init_prev, return_loss=True)
loss_accum += neglikelihood
return loss_accum
pred_prev, neglikelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
# print(f'\t\tprev={F.strprev(pred_prev)} (true={F.strprev(prev)}) got {neglikelihood=}')
loss_accum += neglikelihood
return loss_accum
r = optimize.minimize_scalar(neg_loglikelihood_bandwidth, bounds=(0.00001, 0.2))
if self.search == 'optim':
r = optimize.minimize_scalar(eval_bandwidth, bounds=(0.001, 0.2), options={'xatol': 0.005})
best_band = r.x
best_loss_value = r.fun
nit = r.nit
# assert r.success, 'Process did not converge!'
#found bandwidth=0.00994664 after nit=3 iterations loss_val=-212247.24305)
else:
best_band = None
best_loss_value = None
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
for bandwidth in np.logspace(-4, np.log10(0.2), 20):
mix_densities = self.get_mixture_components(*train.Xy, train.classes_, bandwidth)
loss_accum = 0
for (sample, prev) in tqdm(prot(), total=repeats):
test_densities = [self.pdf(kde_i, sample) for kde_i in mix_densities]
def neg_loglikelihood_prev_(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
return -np.sum(test_loglikelihood)
if self.target == 'likelihood':
loss_fn = neg_loglikelihood_prev_
else:
loss_fn = lambda prev_hat: qp.error.from_name(self.target)(prev, prev_hat)
pred_prev, loss_val = optim_minimize(loss_fn, init_prev, return_loss=True)
loss_accum += loss_val
if best_loss_value is None or loss_accum < best_loss_value:
best_loss_value = loss_accum
best_band = bandwidth
elif self.search=='grid':
nit=20
band_evals = [(band, eval_bandwidth(band)) for band in np.logspace(-4, np.log10(0.2), num=nit)]
best_band, best_loss_value = sorted(band_evals, key=lambda x:x[1])[0]
print(f'found bandwidth={best_band:.8f} after {nit=} iterations loss_val={best_loss_value:.5f})')
self.bandwidth_ = best_band

View File

@ -22,7 +22,7 @@ def newLR():
# typical hyperparameters explored for Logistic Regression
logreg_grid = {
'C': np.logspace(-3,3,7),
'C': np.logspace(-4,4,9),
'class_weight': [None, 'balanced']
}
@ -34,14 +34,16 @@ def wrap_hyper(classifier_hyper_grid: dict):
METHODS = [
('PACC', PACC(newLR()), wrap_hyper(logreg_grid)),
('EMQ', EMQ(newLR()), wrap_hyper(logreg_grid)),
('KDEy-ML', KDEyML(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.logspace(-4, np.log10(0.2), 20)}}),
('KDEy', KDEyML(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.logspace(-4, np.log10(0.2), 20)}}),
# ('KDEy-MLred', KDEyMLred(newLR()), {**wrap_hyper(logreg_grid), **{'bandwidth': np.logspace(-4, np.log10(0.2), 20)}}),
('KDEy-ML-scott', KDEyML(newLR(), bandwidth='scott'), wrap_hyper(logreg_grid)),
('KDEy-ML-silver', KDEyML(newLR(), bandwidth='silverman'), wrap_hyper(logreg_grid)),
('KDEy-ML-autoLike', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood'), wrap_hyper(logreg_grid)),
('KDEy-ML-autoLike+', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood+'), wrap_hyper(logreg_grid)),
('KDEy-ML-autoAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mae'), wrap_hyper(logreg_grid)),
('KDEy-ML-autoRAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mrae'), wrap_hyper(logreg_grid)),
('KDEy-scott', KDEyML(newLR(), bandwidth='scott'), wrap_hyper(logreg_grid)),
('KDEy-silver', KDEyML(newLR(), bandwidth='silverman'), wrap_hyper(logreg_grid)),
('KDEy-NLL', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood', search='grid'), wrap_hyper(logreg_grid)),
('KDEy-NLL+', KDEyMLauto2(newLR(), bandwidth='auto', target='likelihood', search='optim'), wrap_hyper(logreg_grid)),
('KDEy-AE', KDEyMLauto2(newLR(), bandwidth='auto', target='mae', search='grid'), wrap_hyper(logreg_grid)),
('KDEy-AE+', KDEyMLauto2(newLR(), bandwidth='auto', target='mae', search='optim'), wrap_hyper(logreg_grid)),
('KDEy-RAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mrae', search='grid'), wrap_hyper(logreg_grid)),
('KDEy-RAE', KDEyMLauto2(newLR(), bandwidth='auto', target='mrae', search='optim'), wrap_hyper(logreg_grid)),
]
@ -80,12 +82,80 @@ def show_results(result_path):
print(pv)
def run_experiment(method_name, quantifier, param_grid):
print('Init method', method_name)
with open(global_result_path + '.csv', 'at') as csv:
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
print('init', dataset)
# run_experiment(global_result_path, method_name, quantifier, param_grid, dataset)
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
if os.path.exists(local_result_path):
print(f'result file {local_result_path} already exist; skipping')
report = qp.util.load_report(local_result_path)
else:
with qp.util.temp_seed(SEED):
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
train, test = data.train_test
transductive_names = [name for (name, *_) in TRANSDUCTIVE_METHODS]
if method_name not in transductive_names:
if len(param_grid) == 0:
t_init = time()
quantifier.fit(train)
train_time = time() - t_init
else:
# model selection (train)
train, val = train.split_stratified(random_state=SEED)
protocol = UPP(val, repeats=n_bags_val)
modsel = GridSearchQ(
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
)
t_init = time()
try:
modsel.fit(train)
print(f'best params {modsel.best_params_}')
print(f'best score {modsel.best_score_}')
quantifier = modsel.best_model()
except:
print('something went wrong... trying to fit the default model')
quantifier.fit(train)
train_time = time() - t_init
else:
# transductive
t_init = time()
quantifier.fit(train) # <-- nothing actually (proyects the X into posteriors only)
train_time = time() - t_init
# test
t_init = time()
protocol = UPP(test, repeats=n_bags_test)
report = qp.evaluation.evaluation_report(
quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True
)
test_time = time() - t_init
report['tr_time'] = train_time
report['te_time'] = test_time
report.to_csv(local_result_path)
means = report.mean(numeric_only=True)
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
csv.flush()
if __name__ == '__main__':
qp.environ['SAMPLE_SIZE'] = 500
qp.environ['N_JOBS'] = -1
n_bags_val = 25
n_bags_test = 100
n_bags_val = 100
n_bags_test = 500
result_dir = f'results_quantification/ucimulti'
os.makedirs(result_dir, exist_ok=True)
@ -95,69 +165,6 @@ if __name__ == '__main__':
csv.write(f'Method\tDataset\tMAE\tMRAE\tKLD\tTR-TIME\tTE-TIME\n')
for method_name, quantifier, param_grid in METHODS + TRANSDUCTIVE_METHODS:
print('Init method', method_name)
with open(global_result_path + '.csv', 'at') as csv:
for dataset in qp.datasets.UCI_MULTICLASS_DATASETS:
print('init', dataset)
# run_experiment(global_result_path, method_name, quantifier, param_grid, dataset)
local_result_path = os.path.join(Path(global_result_path).parent, method_name + '_' + dataset + '.dataframe')
if os.path.exists(local_result_path):
print(f'result file {local_result_path} already exist; skipping')
report = qp.util.load_report(local_result_path)
else:
with qp.util.temp_seed(SEED):
data = qp.datasets.fetch_UCIMulticlassDataset(dataset, verbose=True)
train, test = data.train_test
transductive_names = [name for (name, *_) in TRANSDUCTIVE_METHODS]
if method_name not in transductive_names:
if len(param_grid) == 0:
t_init = time()
quantifier.fit(train)
train_time = time() - t_init
else:
# model selection (train)
train, val = train.split_stratified(random_state=SEED)
protocol = UPP(val, repeats=n_bags_val)
modsel = GridSearchQ(
quantifier, param_grid, protocol, refit=True, n_jobs=-1, verbose=1, error='mae'
)
t_init = time()
try:
modsel.fit(train)
print(f'best params {modsel.best_params_}')
print(f'best score {modsel.best_score_}')
quantifier = modsel.best_model()
except:
print('something went wrong... trying to fit the default model')
quantifier.fit(train)
train_time = time() - t_init
else:
# transductive
t_init = time()
quantifier.fit(train) # <-- nothing actually (proyects the X into posteriors only)
train_time = time() - t_init
# test
t_init = time()
protocol = UPP(test, repeats=n_bags_test)
report = qp.evaluation.evaluation_report(
quantifier, protocol, error_metrics=['mae', 'mrae', 'kld'], verbose=True
)
test_time = time() - t_init
report['tr_time'] = train_time
report['te_time'] = test_time
report.to_csv(local_result_path)
means = report.mean(numeric_only=True)
csv.write(f'{method_name}\t{dataset}\t{means["mae"]:.5f}\t{means["mrae"]:.5f}\t{means["kld"]:.5f}\t{means["tr_time"]:.3f}\t{means["te_time"]:.3f}\n')
csv.flush()
run_experiment(method_name, quantifier, param_grid)
show_results(global_result_path)

View File

@ -21,7 +21,127 @@ SEED = 1
def newLR():
return LogisticRegression(max_iter=1000)#, C=1, class_weight='balanced')
return LogisticRegression(max_iter=1000)
def plot(xaxis, metrics_measurements, metrics_names, suffix):
fig, ax1 = plt.subplots(figsize=(8, 6))
def add_plot(ax, mean_error, std_error, name, color, marker):
ax.plot(xaxis, mean_error, label=name, marker=marker, color=color)
if std_error is not None:
ax.fill_between(xaxis, mean_error - std_error, mean_error + std_error, color=color, alpha=0.2)
colors = ['b', 'g', 'r', 'c', 'purple']
def get_mean_std(measurement):
measurement = np.asarray(measurement)
measurement_mean = np.mean(measurement, axis=0)
if measurement.ndim == 2:
measurement_std = np.std(measurement, axis=0)
else:
measurement_std = None
return measurement_mean, measurement_std
for i, (measurement, name) in enumerate(zip(metrics_measurements, metrics_names)):
color = colors[i%len(colors)]
add_plot(ax1, *get_mean_std(measurement), name, color=color, marker='o')
ax1.set_xscale('log')
# Configurar etiquetas para el primer eje Y
ax1.set_xlabel('Bandwidth')
ax1.set_ylabel('Normalized value')
ax1.grid(True)
ax1.legend(loc='upper left')
# Crear un segundo eje Y que comparte el eje X
# ax2 = ax1.twinx()
# Pintar likelihood_val en el segundo eje Y
# add_plot(ax2, *get_mean_std(likelihood_measurements), name='NLL', color='purple', marker='x')
# Configurar etiquetas para el segundo eje Y
# ax1.set_ylabel('neg log likelihood')
# ax1.legend(loc='upper right')
# Mostrar el gráfico
plt.title(dataset)
# plt.show()
os.makedirs('./plots/likelihood/', exist_ok=True)
plt.savefig(f'./plots/likelihood/{dataset}-fig{suffix}.png')
plt.close()
def generate_data(from_train=False):
data = qp.datasets.fetch_UCIMulticlassDataset(dataset)
n_classes = data.n_classes
print(f'{i=}')
print(f'{dataset=}')
print(f'{n_classes=}')
print(len(data.training))
print(len(data.test))
train, test = data.train_test
if from_train:
train, test = train.split_stratified(0.5)
train_prev = train.prevalence()
test_prev = test.prevalence()
print(f'train-prev = {F.strprev(train_prev)}')
print(f'test-prev = {F.strprev(test_prev)}')
repeats = 10
prot = UPP(test, sample_size=SAMPLE_SIZE, repeats=repeats)
kde = KDEyMLauto(newLR())
kde.fit(train)
AE_error, RAE_error, MSE_error, KLD_error, LIKE_value = [], [], [], [], []
tr_posteriors, tr_y = kde.classif_predictions.Xy
for sample_no, (sample, prev) in tqdm(enumerate(prot()), total=repeats):
te_posteriors = kde.classifier.predict_proba(sample)
classes = train.classes_
xaxis = []
ae_error = []
rae_error = []
mse_error = []
kld_error = []
likelihood_value = []
# for bandwidth in np.linspace(0.01, 0.2, 50):
for bandwidth in np.logspace(-5, np.log10(0.2), 50):
mix_densities = kde.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
test_densities = [kde.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
def neg_loglikelihood_prev(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
return -np.sum(test_loglikelihood)
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
pred_prev, likelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
xaxis.append(bandwidth)
ae_error.append(qp.error.ae(prev, pred_prev))
rae_error.append(qp.error.rae(prev, pred_prev))
mse_error.append(qp.error.mse(prev, pred_prev))
kld_error.append(qp.error.kld(prev, pred_prev))
likelihood_value.append(likelihood)
AE_error.append(ae_error)
RAE_error.append(rae_error)
MSE_error.append(mse_error)
KLD_error.append(kld_error)
LIKE_value.append(likelihood_value)
return xaxis, AE_error, RAE_error, MSE_error, KLD_error, LIKE_value
def normalize_metric(Error_matrix):
max_val, min_val = np.max(Error_matrix), np.min(Error_matrix)
return (np.asarray(Error_matrix) - min_val) / (max_val - min_val)
SAMPLE_SIZE=150
qp.environ['SAMPLE_SIZE'] = SAMPLE_SIZE
@ -30,158 +150,57 @@ show_ae = True
show_rae = True
show_mse = False
show_kld = True
normalize = True
epsilon = 1e-10
# n_bags_test = 2
# DATASETS = [qp.datasets.UCI_MULTICLASS_DATASETS[21]]
DATASETS = qp.datasets.UCI_MULTICLASS_DATASETS
for i, dataset in enumerate(DATASETS):
for i, dataset in enumerate(tqdm(DATASETS, desc='processing datasets', total=len(DATASETS))):
def generate_data():
data = qp.datasets.fetch_UCIMulticlassDataset(dataset)
n_classes = data.n_classes
print(f'{i=}')
print(f'{dataset=}')
print(f'{n_classes=}')
print(len(data.training))
print(len(data.test))
train, test = data.train_test
train_prev = train.prevalence()
test_prev = test.prevalence()
xaxis, AE_error_te, RAE_error_te, MSE_error_te, KLD_error_te, LIKE_value_te = qp.util.pickled_resource(
f'./plots/likelihood/pickles/{dataset}.pkl', generate_data, False
)
print(f'train-prev = {F.strprev(train_prev)}')
print(f'test-prev = {F.strprev(test_prev)}')
xaxis, AE_error_tr, RAE_error_tr, MSE_error_tr, KLD_error_tr, LIKE_value_tr = qp.util.pickled_resource(
f'./plots/likelihood/pickles/{dataset}_tr.pkl', generate_data, True
)
repeats = 10
prot = UPP(test, sample_size=SAMPLE_SIZE, repeats=repeats)
kde = KDEyMLauto(newLR())
kde.fit(train)
AE_error, RAE_error, MSE_error, KLD_error, LIKE_value = [], [], [], [], []
tr_posteriors, tr_y = kde.classif_predictions.Xy
for it, (sample, prev) in tqdm(enumerate(prot()), total=repeats):
te_posteriors = kde.classifier.predict_proba(sample)
classes = train.classes_
xaxis = []
ae_error = []
rae_error = []
mse_error = []
kld_error = []
likelihood_value = []
# for bandwidth in np.linspace(0.01, 0.2, 50):
for bandwidth in np.logspace(-5, 0.5, 50):
mix_densities = kde.get_mixture_components(tr_posteriors, tr_y, classes, bandwidth)
test_densities = [kde.pdf(kde_i, te_posteriors) for kde_i in mix_densities]
def neg_loglikelihood_prev(prev):
test_mixture_likelihood = sum(prev_i * dens_i for prev_i, dens_i in zip(prev, test_densities))
test_loglikelihood = np.log(test_mixture_likelihood + epsilon)
return -np.sum(test_loglikelihood)
init_prev = np.full(fill_value=1 / n_classes, shape=(n_classes,))
pred_prev, likelihood = optim_minimize(neg_loglikelihood_prev, init_prev, return_loss=True)
xaxis.append(bandwidth)
ae_error.append(qp.error.ae(prev, pred_prev))
rae_error.append(qp.error.rae(prev, pred_prev))
mse_error.append(qp.error.mse(prev, pred_prev))
kld_error.append(qp.error.kld(prev, pred_prev))
likelihood_value.append(likelihood)
AE_error.append(ae_error)
RAE_error.append(rae_error)
MSE_error.append(mse_error)
KLD_error.append(kld_error)
LIKE_value.append(likelihood_value)
return xaxis, AE_error, RAE_error, MSE_error, KLD_error, LIKE_value
xaxis, AE_error, RAE_error, MSE_error, KLD_error, LIKE_value = qp.util.pickled_resource(
f'./plots/likelihood/pickles/{dataset}.pkl', generate_data)
for row in range(len(AE_error)):
# Crear la figura
# ----------------------------------------------------------------------------------------------------
fig, ax1 = plt.subplots(figsize=(8, 6))
# Pintar las series ae_error, rae_error, y kld_error en el primer eje Y
if show_ae:
ax1.plot(xaxis, AE_error[row], label='AE', marker='o', color='b')
if show_rae:
ax1.plot(xaxis, RAE_error[row], label='RAE', marker='s', color='g')
if show_kld:
ax1.plot(xaxis, KLD_error[row], label='KLD', marker='^', color='r')
if show_mse:
ax1.plot(xaxis, MSE_error[row], label='MSE', marker='^', color='c')
ax1.set_xscale('log')
# Configurar etiquetas para el primer eje Y
ax1.set_xlabel('Bandwidth')
ax1.set_ylabel('Error Value')
ax1.grid(True)
ax1.legend(loc='upper left')
# Crear un segundo eje Y que comparte el eje X
ax2 = ax1.twinx()
# Pintar likelihood_val en el segundo eje Y
ax2.plot(xaxis, LIKE_value[row], label='(neg)Likelihood', marker='x', color='purple')
# Configurar etiquetas para el segundo eje Y
ax2.set_ylabel('Likelihood Value')
ax2.legend(loc='upper right')
# Mostrar el gráfico
plt.title('Error Metrics vs Bandwidth')
# plt.show()
os.makedirs('./plots/likelihood/', exist_ok=True)
plt.savefig(f'./plots/likelihood/{dataset}-fig{row}.png')
plt.close()
# Crear la figura con las medias
# Test measurements
# ----------------------------------------------------------------------------------------------------
fig, ax1 = plt.subplots(figsize=(8, 6))
measurements = []
measurement_names = []
if show_ae:
measurements.append(AE_error_te)
measurement_names.append('AE')
if show_rae:
measurements.append(RAE_error_te)
measurement_names.append('RAE')
if show_kld:
measurements.append(KLD_error_te)
measurement_names.append('KLD')
if show_mse:
measurements.append(MSE_error_te)
measurement_names.append('MSE')
measurements.append(normalize_metric(LIKE_value_te))
measurements.append(normalize_metric(LIKE_value_tr))
measurement_names.append('NLL(te)')
measurement_names.append('NLL(tr)')
def add_plot(ax, vals_error, name, color, marker, show):
if not show:
return
vals_error = np.asarray(vals_error)
vals_ave = np.mean(vals_error, axis=0)
vals_std = np.std(vals_error, axis=0)
ax.plot(xaxis, vals_ave, label=name, marker=marker, color=color)
ax.fill_between(xaxis, vals_ave - vals_std, vals_ave + vals_std, color=color, alpha=0.2)
if normalize:
measurements = [normalize_metric(m) for m in measurements]
add_plot(ax1, AE_error, 'AE', color='b', marker='o', show=show_ae)
add_plot(ax1, RAE_error, 'RAE', color='g', marker='s', show=show_rae)
add_plot(ax1, KLD_error, 'KLD', color='r', marker='^', show=show_kld)
add_plot(ax1, MSE_error, 'MSE', color='c', marker='^', show=show_mse)
ax1.set_xscale('log')
# plot(xaxis, measurements, measurement_names, suffix='AVE')
# Configurar etiquetas para el primer eje Y
ax1.set_xlabel('Bandwidth')
ax1.set_ylabel('Error Value')
ax1.grid(True)
ax1.legend(loc='upper left')
# Crear un segundo eje Y que comparte el eje X
ax2 = ax1.twinx()
# Pintar likelihood_val en el segundo eje Y
add_plot(ax2, LIKE_value, '(neg)Likelihood', color='purple', marker='x', show=True)
# Configurar etiquetas para el segundo eje Y
ax2.set_ylabel('Likelihood Value')
ax2.legend(loc='upper right')
# Mostrar el gráfico
plt.title('Error Metrics vs Bandwidth')
# plt.show()
os.makedirs('./plots/likelihood/', exist_ok=True)
plt.savefig(f'./plots/likelihood/{dataset}-figAve.png')
plt.close()
# Train-Test measurements
# ----------------------------------------------------------------------------------------------------
# measurements = []
# measurement_names = []
# measurements.append(normalize_metric(LIKE_value_te))
# measurements.append(normalize_metric(LIKE_value_tr))
# measurement_names.append('NLL(te)')
# measurement_names.append('NLL(tr)')
plot(xaxis, measurements, measurement_names, suffix='AVEtr')